Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computational methods for predicting protein function are of great significance in understanding biological mechanisms and treating complex diseases. However, existing computational approaches of protein function prediction lack interpretability, making it difficult to understand the relations between protein structures and functions. In this study, we propose a deep learning-based solution, named DPFunc, for accurate protein function prediction with domain-guided structure information. DPFunc can detect significant regions in protein structures and accurately predict corresponding functions under the guidance of domain information. It outperforms current state-of-the-art methods and achieves a significant improvement over existing structure-based methods. Detailed analyses demonstrate that the guidance of domain information contributes to DPFunc for protein function prediction, enabling our method to detect key residues or regions in protein structures, which are closely related to their functions. In summary, DPFunc serves as an effective tool for large-scale protein function prediction, which pushes the border of protein understanding in biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697396 | PMC |
http://dx.doi.org/10.1038/s41467-024-54816-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!