In modern digital systems, sequential logic circuits store and process information over time, whereas combinational logic circuits process only the current inputs. Conventional sequential systems, however, are complex and energy-inefficient due to the separation of volatile and nonvolatile memory components. This study proposes a compact, nonvolatile, and reconfigurable van der Waals (vdW) ferroelectric field-effect transistor (FeFET)-based sequential logic-in-memory (S-LiM) unit that performs sequential logic operations in two nonvolatile states. Unlike conventional edge computing systems that require separate combinational logic circuits, sequential logic circuits (such as latches for short-term data storage), and nonvolatile memory for long-term data storage, this innovative S-LiM unit integrates logic and memory into a single nonvolatile vdW FeFET device. The nonvolatile ferroelectric elements directly replace both sequential logic and memory in conventional systems, eliminating frequent data transfers, reducing static power, and increasing the storage density. Six distinct logic operations are implemented in a single vdW FeFET through voltage-controlled ferroelectric polarization, highlighting the unit's reconfigurability. The device shows significant potential for low-power edge computing, especially where frequent power cycling is necessary. Its nonvolatile polarization retains the state without the need for storing processes, enabling rapid recovery at startup, even after extended power-off periods of tens of minutes. These features make the vdW FeFET-based S-LiM unit ideal for energy-efficient, high-density, and low-power edge computing, especially in remote operations with unstable power supplies. This innovation contributes to the development of next-generation, low-power electronics with enhanced efficiency and storage density.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14062DOI Listing

Publication Analysis

Top Keywords

sequential logic
16
logic circuits
16
s-lim unit
12
edge computing
12
ferroelectric field-effect
8
logic
8
combinational logic
8
nonvolatile memory
8
logic operations
8
data storage
8

Similar Publications

In modern digital systems, sequential logic circuits store and process information over time, whereas combinational logic circuits process only the current inputs. Conventional sequential systems, however, are complex and energy-inefficient due to the separation of volatile and nonvolatile memory components. This study proposes a compact, nonvolatile, and reconfigurable van der Waals (vdW) ferroelectric field-effect transistor (FeFET)-based sequential logic-in-memory (S-LiM) unit that performs sequential logic operations in two nonvolatile states.

View Article and Find Full Text PDF

Two-dimensional (2D) semiconductors, combining remarkable electrical properties and mechanical flexibility, offer fascinating opportunities for flexible integrated circuits (ICs). Despite notable progress, so far the showcased 2D flexible ICs have been constrained to basic logic gates and ring oscillators with a maximum integration scale of a few thin film transistors (TFTs), creating a significant disparity in terms of circuit scale and functionality. Here, we demonstrate medium-scale flexible ICs integrating both combinational and sequential elements based on 2D molybdenum disulfide (MoS).

View Article and Find Full Text PDF

Memristive Ion Dynamics to Enable Biorealistic Computing.

Chem Rev

December 2024

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States.

Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention.

View Article and Find Full Text PDF

Background: In many Asian jurisdictions, patients are required to obtain referrals from registered doctors before consulting physiotherapists. In contrast, countries such as the United States, the United Kingdom, and Australia have a direct access model for physiotherapists designed across different healthcare settings and under prescribed conditions. While research has demonstrated the benefits of direct access, issues remain on the appropriate policy design for direct access in the context of patient safety and organizational challenges in the implementation.

View Article and Find Full Text PDF

A simple chromone-derived fluorescent "Turn-on" probe for accurate detection of Al Ions: Applications in food Analysis, test strips and bioimaging.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Henan Institute of Advanced Technology, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

To address the toxicity concerns of aluminum ions (Al) due to their widespread environmental presence, a novel chromone-derived fluorescent probe, (E)-N'-((4-oxo-4H-chromen-3-yl)methylene)benzohydrazide (NMA), was developed for dual-mode detection combining colorimetric and fluorometric channels. Upon chelation with Al in a 1:1 stoichiometric ratio, NMA exhibited a significant fluorescence enhancement at 510 nm, accompanied by a rapid and visible color change due to the chelation-enhanced fluorescence (CHEF) effect, achieving an exceptional detection limit of 9 nM-well below the World Health Organization's recommended threshold. The reversible binding of NMA, demonstrated through sequential addition of Al and EDTA, enabled the construction of an INHIBIT molecular logic gate, broadening its potential for smart sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!