AI Article Synopsis

  • This study examines how the growth and calcification of the appendicular skeleton in the Raja asterias affects its movement in water, highlighting the link between bone structure and fin mechanics.
  • It identifies two growth patterns—crustal in larger skeletal parts and catenated in fin radials—showing how differences in development can influence fin flexibility and locomotion.
  • The results suggest that unique calcification patterns, especially in the pelvic fins, evolve to meet the mechanical needs of swimming, emphasizing the adaptability of Batoidea fins through their joint structures and specialized designs.

Article Abstract

This study investigates the growth and calcification of the appendicular skeleton in Raja asterias (Delaroche, 1809), a member of the Batoidea, to explore the relationship between histomorphology and the mechanics of batoid locomotion within the water column. Although much prior research has focused on the "tessellated pattern" in these fishes, the variable structure of the appendicular skeleton provides fresh insights into the understudied interplay between skeletal histomorphology and the mechanical functions of Batoidea fins. The shape and initial growth of fin cartilage are influenced by the orientation of chondrocyte mitoses prior to mineral deposition, with subsequent calcification playing a pivotal role in shaping skeletal architecture. This study documents two distinct growth patterns: "crustal" and "catenated." The crustal pattern is predominantly observed in larger skeletal elements, such as the central body structures (skull, rostrum, and jaws), girdles, pterygia, and compound radials, whereas fin radials follow the catenated growth pattern. Notably, early-stage chondrichthyan cartilage shares similarities with mammalian metaphyseal growth plate cartilage, though in chondrichthyans, the calcified matrix is not resorbed or replaced by bone. Additionally, a previously unrecognized calcification pattern is identified in the pelvic-fin radials of R. asterias, indicating that the mechanical demands of locomotion in the water column may have driven the evolution of variable fin flexibility in Batoidea. This flexibility is achieved through joint mobility (diarthroses and amphiarthroses), specialized fin structures, and the distinct calcification patterns of the pectoral and pelvic fins.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.16037DOI Listing

Publication Analysis

Top Keywords

raja asterias
8
appendicular skeleton
8
locomotion water
8
water column
8
growth
6
growth mechanical
4
mechanical correlations
4
correlations calcified
4
cartilage
4
calcified cartilage
4

Similar Publications

Article Synopsis
  • This study examines how the growth and calcification of the appendicular skeleton in the Raja asterias affects its movement in water, highlighting the link between bone structure and fin mechanics.
  • It identifies two growth patterns—crustal in larger skeletal parts and catenated in fin radials—showing how differences in development can influence fin flexibility and locomotion.
  • The results suggest that unique calcification patterns, especially in the pelvic fins, evolve to meet the mechanical needs of swimming, emphasizing the adaptability of Batoidea fins through their joint structures and specialized designs.
View Article and Find Full Text PDF

Before calcification begins, the early embryonic and fetal skeletal development of both mammalian and the chondrichthyan fish consists exclusively of cartilage. This cartilage is formed and shaped through processes involving tissue segmentation and the frequency, distribution, and orientation of chondrocyte mitoses. In the subsequent developmental phase, mineral deposition in the cartilage matrix conditions the development further.

View Article and Find Full Text PDF

The genus Urotrygon comprises small- to medium-sized endemic round rays on the American continent and has undergone several synonymization processes. Here, we used an integrative taxonomic approach, including meristic, morphometric, and mtDNA analyses, to resolve the particularly intricate relationship among Urotrygon munda Gill, 1863, Urotrygon chilensis (Günther, 1872), and Urotrygon asterias (Jordan & Gilbert, 1883). The latter species is currently a synonym of U.

View Article and Find Full Text PDF

This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study.

View Article and Find Full Text PDF

The macroscopic and microscopic morphology of the appendicular skeleton was studied in the two species Raja asterias (order Rajiformes) and Torpedo marmorata (Order Torpediniformes), comparing the organization and structural layout of pectoral, pelvic, and tail fin systems. The shape, surface area and portance of the T. marmorata pectoral fin system (hydrodynamic lift) were conditioned by the presence of the two electric organs in the disk central part, which reduced the pectoral fin surface area, suggesting a lower efficiency of the "flapping effectors" than those of R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!