Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging. Benefiting from the synergistic interaction between dual organic ligands and lanthanide ions, the Eu(TTA)3Phen complex demonstrates exceptional radioluminescence and light yield under X-ray excitation, with a detection limit of 19.97 nGy s-1, well below typical radiation doses used in medical diagnostics. Moreover, lanthanide complex Eu(TTA)3Phen exhibited excellent thermal and photostability, showing minimal degradation even after extended X-ray exposure. By integrating with flexible polymer matrices, a high-transmission Eu(TTA)3Phen-PMMA composite film was fabricated for X-ray radiography, demonstrating high spatial resolution (< 10 um) and superior image quality across various target samples. These findings hold substantial promise for next-generation X-ray imaging applications, offering high sensitivity, stability, flexibility, and versatility, making them ideally suited for advanced radiographic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202423155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!