Psychiatric disorders, including anxiety and depression, are highly comorbid in people with epilepsy. However, the mechanisms mediating the shared pathophysiology are currently unknown. There is considerable evidence implicating the basolateral amygdala (BLA) in the network communication of anxiety and fear, a process demonstrated to involve parvalbumin-positive (PV) interneurons. The loss of PV interneurons has been well described in the hippocampus of chronically epileptic mice and in postmortem human tissue of patients with temporal lobe epilepsy (TLE). We hypothesize that a loss of PV interneurons in the BLA may contribute to comorbid mood disorders in epilepsy. To test this hypothesis, we employed a ventral intrahippocampal kainic acid (vIHKA) model of temporal lobe epilepsy in mice, which exhibits profound behavioral deficits associated with chronic epilepsy. We demonstrate a loss of PV interneurons and dysfunction of remaining PV interneurons in the BLA of chronically epileptic mice. Further, we demonstrate altered principal neuron function and impaired coordination of BLA network and behavioral states in chronically epileptic mice. To determine whether the loss of PV interneurons contributes to these altered network and behavioral states, we partially ablated PV interneurons in the BLA by stereotaxically injecting AAV-Flex-DTA into the BLA of PV-Cre mice. Loss of PV interneurons in the BLA is sufficient to alter behavioral states, such as increasing avoidance behaviors and impairing fear learning. These data suggest that compromised inhibition in the BLA in chronically epileptic mice may contribute to behavioral deficits, suggesting a novel mechanism contributing to comorbid anxiety and epilepsy. Psychiatric illnesses and epilepsy are highly comorbid and negatively impact the quality of life of people with epilepsy. The pathophysiological mechanisms mediating the bidirectional relationship between mood disorders and epilepsy remain unknown and, therefore, treatment options remain inadequate. Here we demonstrate a potential novel mechanism, involving the loss of PV interneurons in the BLA, leading to a corruption of network and behavioral states in mice. These findings pinpoint a critical node and demonstrate a potential novel cellular and circuit mechanism involved in the comorbidity of psychiatric illnesses and epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1523/ENEURO.0482-23.2024DOI Listing

Publication Analysis

Top Keywords

loss interneurons
28
interneurons bla
24
behavioral states
20
chronically epileptic
20
epileptic mice
20
network behavioral
16
bla
10
epilepsy
10
interneurons
9
bla contribute
8

Similar Publications

Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congential seizures.

View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Background: Numerous studies have identified AD-associated molecular and cellular changes to the cortex using single nucleus RNA sequencing (snRNA-seq) and, to a lesser extent, single nucleus ATAC-seq (snATAC-seq), applied to millions of cells across hundreds of donors. It has proven challenging, however, to determine whether changes are consistent because of differences in cohort selection, reported clinical metadata, data pre-processing, cellular taxonomy construction/mapping, and analytical strategies across studies.

Method: We uniformly re-processed 10 publicly available datasets (Table 1) that had applied snRNA-seq to 4.

View Article and Find Full Text PDF

Psychiatric disorders, including anxiety and depression, are highly comorbid in people with epilepsy. However, the mechanisms mediating the shared pathophysiology are currently unknown. There is considerable evidence implicating the basolateral amygdala (BLA) in the network communication of anxiety and fear, a process demonstrated to involve parvalbumin-positive (PV) interneurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!