Background: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2i) are antihyperglycemic agents that provide additional renal-protective effects in patients with DKD, independent of their glucose-lowering effects. However, the underlying mechanism remains unclear. This study hypothesized that SGLT2i could alleviate diabetic kidney injury by inhibiting ferroptosis and explored its potential mechanisms.
Methods: C57BL/6J mice were randomly divided into the control, DKD, DKD+dapagliflozin, and DKD+insulin treatment groups. Blood glucose levels and body weight were monitored. Renal function, tissue pathology, mitochondrial morphology and function, and lipid peroxidation biomarkers (lipid peroxidation [LPO], malondialdehyde [MDA], glutathione peroxidase 4 [GPX4], glutathione [GSH], and cystine transporter solute carrier family 7 member 11 [SLC7A11]) were evaluated. Human proximal tubule cells (HK2 cells) were exposed to high glucose alone or in combination with dapagliflozin. The mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) level, NAD+/NADH ratio (oxidized/reduced ratio of nicotinamide adenine dinucleotide), and lipid peroxidation were measured. In addition, the role of the β-hydroxybutyrate- Calcium/Calmodulin Dependent Protein Kinase Kinase 2 (BHB-CaMKK2) axis in mediating dapagliflozin regulating ferroptosis was examined.
Results: Dapagliflozin significantly ameliorated kidney injury in mice with DKD. Typical changes in ferroptosis, including lipid peroxidation and impaired antioxidant capacity, increased in mice with DKD and HG-treated HK-2 cells. Dapagliflozin significantly improves ferroptosis-related lipid peroxidation and mitochondrial dysfunction. Furthermore, dapagliflozin suppressed the expression of CaMKK2, a key ferroptosis regulator. Specific CaMKK2 inhibitors alleviated mitochondrial damage and ferroptosis, whereas a CaMKK2 agonist counteracted the protective effects of dapagliflozin against mitochondrial, antioxidant, and anti-ferroptosis effects. In addition, dapagliflozin increased BHB production, which mediates its nephroprotective effects.
Conclusion: Dapagliflozin improves DKD by inhibiting ferroptosis, promoting BHB production, and regulating CaMKK2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0886022X.2024.2438857 | DOI Listing |
Bioorg Chem
December 2024
Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China. Electronic address:
Background: Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis.
View Article and Find Full Text PDFChin Med
January 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252059, China.
Erastin, as an effective ferroptosis inducer, has received extensive attention in anti-tumor research. To develop an oral nanocarrier for high efficient loading hydrophobic erastin, here we prepared a fluoro-liposome (FA-3 F-LS) by the self-assembly of the folic acid modified fluorinated amphiphiles-FA-3 F conjugates. The hydrophobic component of three perfluorooctyl chains endows the FA-3 F-LSs with high stability to resist the harsh gastrointestinal tract condition.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:
SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!