Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fenton reactions, commonly employed in environmental remediation, decompose H₂O₂ using Fe⁺ to generate free radicals. However, the efficiency is often limited by the slow conversion of Fe³⁺ to Fe⁺. In this study, we synthesize zero-valent iron nanoparticles (nZVI) via a green, plant extract-mediated reduction method, resulting in nZVI coated with a reductive polyphenolic layer that enhances Fe³⁺/Fe⁺ cycling. Supported on bamboo-derived biochar (BBC) via in situ reduction, the nZVI showe improved dispersibility and recovery during catalytic processes. Characterizations by SEM, TEM, FTIR, XRD, and XPS together confirm the successful synthesis of the nZVI/BBC composite. We evaluate the catalytic performance by degrading Eriochrome Black T (EBT) dye in the presence of H₂O₂. Under optimal conditions (35 °C, pH 3), the nZVI/BBC catalyst achieves over 90% degradation of EBT within 10 min. The dual function of the surface-functionalized nZVI as both iron source and co-catalyst significantly improves the reaction efficiency, offering a promising approach for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120736 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!