Nano zero-valent iron with a self-forming Co-catalytic surface for enhanced Fenton-like reactions.

Environ Res

School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China. Electronic address:

Published: December 2024

AI Article Synopsis

Article Abstract

Fenton reactions, commonly employed in environmental remediation, decompose H₂O₂ using Fe⁺ to generate free radicals. However, the efficiency is often limited by the slow conversion of Fe³⁺ to Fe⁺. In this study, we synthesize zero-valent iron nanoparticles (nZVI) via a green, plant extract-mediated reduction method, resulting in nZVI coated with a reductive polyphenolic layer that enhances Fe³⁺/Fe⁺ cycling. Supported on bamboo-derived biochar (BBC) via in situ reduction, the nZVI showe improved dispersibility and recovery during catalytic processes. Characterizations by SEM, TEM, FTIR, XRD, and XPS together confirm the successful synthesis of the nZVI/BBC composite. We evaluate the catalytic performance by degrading Eriochrome Black T (EBT) dye in the presence of H₂O₂. Under optimal conditions (35 °C, pH 3), the nZVI/BBC catalyst achieves over 90% degradation of EBT within 10 min. The dual function of the surface-functionalized nZVI as both iron source and co-catalyst significantly improves the reaction efficiency, offering a promising approach for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120736DOI Listing

Publication Analysis

Top Keywords

zero-valent iron
8
environmental remediation
8
nano zero-valent
4
iron self-forming
4
self-forming co-catalytic
4
co-catalytic surface
4
surface enhanced
4
enhanced fenton-like
4
fenton-like reactions
4
reactions fenton
4

Similar Publications

There is an urgent need to develop effective and sustainable methods to decrease sulfonamide (SA) contamination of soil. Herein, a non-homogeneous system of zero-valent metal-biochar-based composites was proposed and tested for persulfate (PS) activation. This system employed zero-valent iron (Fe) as an electron donor to catalyze the cleavage of the OO bond in PS, thereby generating reactive oxygen species (ROS) that degrade SAs.

View Article and Find Full Text PDF

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

Efficient degradation of ciprofloxacin in water using nZVI/g-CN enhanced dielectric barrier discharge plasma process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Malic acid-derived polyamides, polyhydrazides, and hydrazides exhibit strong potential for a variety of biological applications. This study demonstrates the synthesis of cobalt, silver, copper, zinc, and iron particles by a facile chemical reduction approach utilizing malic acid-derived polyamides, polyhydrazides, and hydrazides as stabilizing and reducing agents. Comprehensive characterization of the particles was performed using UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX analysis.

View Article and Find Full Text PDF

The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!