A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Impact of Process Parameters on the Lyophilized Porous Micro-structure: A Case Study of Dextran. | LitMetric

Freeze-drying is used to prolong the shelf life of pharmaceutical formulations stored in vials. To achieve this, formulations are first frozen and then dried, yielding a porous product that can in some cases be stored even at ambient conditions. In this work, the effect of different process parameters on the properties of the porous micro-structure obtained when freeze-drying dextran solutions was studied. To characterize the pore sizes, the samples were imaged with scanning electron microscopy (SEM) and the images were manually analyzed to determine the pore size distribution. To study the robustness of such manual pore characterization methodology, a reliability analysis was carried out, which showed that defining a set of guidelines leads to comparable pore size distributions among multiple participants conducting the analysis. The pore characterization methodology was then applied to products that were freeze-dried under different conditions. Higher dextran concentrations and higher cooling rates were found to lead to predominantly smaller pore sizes and longer primary drying. The conclusions of this work complement the existing literature in demonstrating the robustness of the manual pore size analysis and give valuable insight into the link between the micro-structure formed during the freezing of dextran solutions and the drying performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2024.12.020DOI Listing

Publication Analysis

Top Keywords

pore size
12
process parameters
8
porous micro-structure
8
dextran solutions
8
pore sizes
8
robustness manual
8
manual pore
8
pore characterization
8
characterization methodology
8
pore
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!