Dry eye disease (DED) is a multifactorial condition with complex and incompletely understood molecular mechanisms. Advances in multi-omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and microbiomics, have provided new insights into the pathophysiology of DED. Genomic analyses have identified key genetic variants linked to immune regulation and lacrimal gland function. Transcriptomic studies reveal upregulated inflammatory pathways in ocular surface tissues, implicating these as core drivers of chronic inflammation. Proteomic research highlights significant alterations in tear protein composition, especially proteins involved in inflammation and tissue repair. Metabolomics studies focus on disrupted lipid metabolism and oxidative stress, which are crucial in maintaining tear film stability. Furthermore, microbiome research has demonstrated reduced microbial diversity and increased pathogenic bacteria, exacerbating inflammatory responses. The integration of multi-omics data allows for the identification of novel biomarkers and therapeutic targets, enabling precision diagnostics and personalized treatments. Therefore, this review highlights the critical importance of multi-omics approaches in deepening our understanding of DED's complex molecular mechanisms and their potential to transform clinical management and therapeutic innovations in this challenging field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtos.2024.12.010DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
12
dry eye
8
systems biology
4
biology dry
4
eye unraveling
4
unraveling molecular
4
multi-omics
4
mechanisms multi-omics
4
multi-omics integration
4
integration dry
4

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

The FEBS Journal in 2025: in all science, error precedes the truth.

FEBS J

January 2025

The FEBS Journal Editorial Office, Cambridge, UK.

The FEBS Journal publishes primary papers as well as reviews in the molecular life sciences relating to the molecules and mechanisms underpinning biological processes. Editor-in-Chief Seamus Martin shares some thoughts on the nature of conducting research, some highlights of the past year at the journal, and what is in store for 2025.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!