Pyrethroid pesticides have been associated with neurodevelopmental disorders including attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). While behavioral effects of pyrethroid exposure have been previously reported, the underlying mechanisms remain unclear. Here, we hypothesized that exposure to deltamethrin (DM), a widely used pyrethroid pesticide known for its neurotoxicity during early developmental stages, induces brain dysfunction through alterations in brain-derived extracellular vesicle (BDEV) signaling. Using a well-established rodent model of early life DM exposure within the recommended no observable effect level, we isolated BDEVs from postnatal 30-day-old vehicle-exposed (control) and DM-exposed mice using a differential sucrose density gradient. Following ZetaView nanoparticle tracking and electron microscopy characterization, quantitative mass spectrometry-based proteomics revealed 89 differentially expressed proteins (DEPs) in BDEVs from DM exposed animals compared to control BDEVs. Bioinformatic analysis identified convergence of DEPs on pathways associated with mitochondrial function and synaptic plasticity. PKH67-green conjugated BDEVs derived from either control or DM-exposed mice were bilaterally injected intracerebroventricularly into naïve adult mice, and the brain distribution of labeled BDEVs was verified prior to extracellular field recording experiments. Strikingly, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses, a functional correlate of learning and memory, was intact in control BDEVs, but absent in naïve mice receiving BDEVs from DM exposed mice. Notably, exogenously delivering LRRTM1, one of the DEPs found in DM BDEVs, disrupts synaptic transmission in CA1 neurons consistent with impaired LTP. Thus, differentially regulated signaling in BDEVs represents a novel mechanism of DM neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcpro.2024.100902 | DOI Listing |
Mol Cell Proteomics
December 2024
Department of Pharmacology and Toxicology, University of Texas Medical Branch.
We have developed a platform for the high-throughput, multiplexed, and ultra-sensitive profiling of individual extracellular vesicles (EVs) directly in plasma, which we call BDEVS - Agarose ead-based igital Single Molecule-Single orting. Unlike conventional approaches, BDEVS achieves single molecule sensitivity and moderate multiplexing (demonstrated 3-plex) without sacrificing the throughput (processing ten thousand of EVs per minute) necessary to resolve EVs directly in human plasma. Our platform integrates rolling circle amplification (RCA) of EV surface proteins, which are cleaved from single EVs, and amplified within agarose droplets, followed by flow cytometry-based readout and sorting, overcoming steric hindrance, non-specific binding, and the lack of quantitation of multiple proteins on EVs that have plagued earlier approaches.
View Article and Find Full Text PDFJ Extracell Vesicles
November 2024
Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs.
View Article and Find Full Text PDFJ Extracell Biol
July 2024
The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science La Trobe University Bundoora Victoria Australia.
Neuroinflammation is initiated through microglial activation and cytokine release which can be induced through lipopolysaccharide treatment (LPS) leading to a transcriptional cascade culminating in the differential expression of target proteins. These differentially expressed proteins can then be packaged into extracellular vesicles (EVs), a form of cellular communication, further propagating the neuroinflammatory response over long distances. Despite this, the EV proteome in the brain, following LPS treatment, has not been investigated.
View Article and Find Full Text PDFCell Mol Life Sci
May 2024
Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany.
Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!