Toll-like receptor (TLR) 7/8 agonists have shown significant potential in tumor immunotherapy. However, the limited pharmacokinetic properties and systemic toxicity resulting from off-target effects limits their biomedical applications. We here report the polyphenol-mediated assembly of resiquimod (R848, a TLR7/8 agonist) nanoparticles (RTP NPs) to achieve tumor-selective immunotherapy while avoiding systemic adverse effects. Upon intravenous administration, the prepared RTP NPs are effectively accumulated at tumor sites, which increase their bioavailability and reduce systemic inflammation. RTP NPs can trigger a potent antitumor immune response in a mouse tumor model to inhibit tumor growth. Additionally, after subcutaneous injection at the tail base, RTP NPs efficiently migrate to the lymph nodes, where they elicit immune memory to prevent tumorigenesis. This study underscores the potential application of polyphenol-mediated assembly in developing nanomedicines with reduced toxicity for tumor-specific immunotherapy. STATEMENT OF SIGNIFICANCE: Toll-like receptor agonist (R848) nanoparticles for tumor-selective immunotherapy were synthesized through polyphenol-mediated assembly, a method that simplifies preparation process and minimizes potential side effects. Intravenously administered these nanoparticles effectively extended circulation time, enhanced tumor enrichment, and reduced systemic inflammation, thus augmenting the bioavailability and minimizing the side effects of R848. The nanoparticles significantly inhibited tumor growth by triggering a potent antitumor immune response, including dendritic cell maturation, macrophage polarization, T-cell infiltration, and cytokine secretion. Moreover, after subcutaneous injection at the tail base, they can elicit immune memory to prevent tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.12.060DOI Listing

Publication Analysis

Top Keywords

polyphenol-mediated assembly
16
rtp nps
16
toll-like receptor
12
agonist nanoparticles
8
tumor immunotherapy
8
tumor-selective immunotherapy
8
systemic inflammation
8
potent antitumor
8
antitumor immune
8
immune response
8

Similar Publications

Polyphenol-Mediated Assembly of Toll-like Receptor 7/8 Agonist Nanoparticles for Effective Tumor Immunotherapy.

Acta Biomater

December 2024

The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Toll-like receptor (TLR) 7/8 agonists have shown significant potential in tumor immunotherapy. However, the limited pharmacokinetic properties and systemic toxicity resulting from off-target effects limits their biomedical applications. We here report the polyphenol-mediated assembly of resiquimod (R848, a TLR7/8 agonist) nanoparticles (RTP NPs) to achieve tumor-selective immunotherapy while avoiding systemic adverse effects.

View Article and Find Full Text PDF

Polyphenol Mediated Assembly: Tailored Nano-Dredger Unblocks Axonal Autophagosomes Retrograde Transport Traffic Jam for Accelerated Alzheimer's Waste Clearance.

Adv Mater

December 2024

Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.

Clear-cut evidence has linked defective autophagy to Alzheimer's disease (AD). Recent studies underscore a unique hurdle in AD neuronal autophagy: impaired retrograde axonal transport of autophagosomes, potent enough to induce autophagic stress and neurodegeneration. Nonetheless, pertinent therapy is unavailable.

View Article and Find Full Text PDF

Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation.

Adv Healthc Mater

November 2024

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.

Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement.

View Article and Find Full Text PDF

Lateral Flow Immunoassay for the Rapid Detection of Thiamethoxam in Tea Based on a SERS Tag Constructed by Phenolic-Mediated Coating Engineering.

J Agric Food Chem

November 2024

State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.

Sensitive and accurate detection of thiamethoxam in tea is significant to ensuring consumer health. In this study, surface-enhanced Raman scattering (SERS) tags were prepared by using a polyphenol-mediated coating engineering strategy. This approach involved the self-assembly of tannic acid (TA) and self-polymerization of benzene-1,4-dithiol (BDT) on the surface of gold nanoparticles, resulting in the formation of Au@pBDT-TA.

View Article and Find Full Text PDF

Nano-structured hydrogel with unique anti-oil fouling property exhibits big advantage in oil/water separation, but its application in complex oily wastewater (contain oils, organic matter, bacteria, etc.) cleanup is hampered by the insufficient capabilities in multi-antifouling and synergistic treatment. Herein, we constructed the amino-rich NH-AgBiS/PANI (polyaniline)-g-CN based multi-functional hydrogel functional layer onto the polyacrylonitrile (PAN) fiber membrane via polyphenol-mediated chitosan gelation and vacuum-assisted self-assembly techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!