During cardiac development the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in the past decades, it has become clear that cardiac nerves can regenerate after cardiac damage. An excessive amount of re-innervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In light of cardiac innervation, most studies focus on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although literature on their role in cardiac innervation is still relatively scarce, semaphorins, in particular SEMA3A, seem relevant candidates to consider when exploring options to modulate pathological innervation patterns in cardiovascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2024.12.030DOI Listing

Publication Analysis

Top Keywords

axonal guidance
16
ventricular arrhythmias
12
cardiac innervation
12
guidance cue
8
postnatal heart
8
cardiac
8
nervous system
8
cardiac damage
8
sympathetic hyperinnervation
8
heart failure
8

Similar Publications

Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans.

Bone Res

January 2025

The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.

Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.

View Article and Find Full Text PDF

During cardiac development the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in the past decades, it has become clear that cardiac nerves can regenerate after cardiac damage.

View Article and Find Full Text PDF

A generative model of the connectome with dynamic axon growth.

Netw Neurosci

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.

View Article and Find Full Text PDF

Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers.

View Article and Find Full Text PDF

The corticospinal tract (CST) facilitates skilled, precise movements, which necessitates that subcerebral projection neurons (SCPN) establish segmentally specific connectivity with brainstem and spinal circuits. Developmental molecular delineation enables prospective identification of corticospinal neurons (CSN) projecting to thoraco-lumbar spinal segments; however, it remains unclear whether other SCPN subpopulations in developing sensorimotor cortex can be prospectively identified in this manner. Such molecular tools could enable investigations of SCPN circuitry with precision and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!