Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wogonin is a flavonoid with efficacy in ulcerative colitis (UC), while the mechanism of its action remains to be fully elucidated. Previous research has indicated that the activation of the triple recycling pathway significantly enhances the bioavailability of flavonoids. The efflux transporters, BCRP and MRP2 are critical regulatory molecules within the enterohepatic triple recycling pathways. Therefore, we investigated the regulatory impact of wogonin on BCRP and MRP2, as well as the roles of these transporters in wogonin's therapeutic efficacy in UC. Using dextran sulfate sodium (DSS)-induced UC model, we found that the anti-UC efficacy of wogonin was diminished in Bcrp-Mrp2 mice compared to wild-type (WT) mice. In these knockout mice, the content of wogonin was increased in the plasma but decreased in the colon tissues, suggesting that deficiencies in BCRP and MRP2 hinder the efflux of wogonin, resulting in elevated contents in the plasma. Moreover, in vitro results showed that after knockout of BCRP and MRP2, the concentration of wogonin increased and its UGT metabolite wogonoside, decreased in cells and mitochondria. This indicates that inhibiting efflux transporters suppresses cellular and mitochondrial glucuronidation metabolism. Interestingly, proteomic sequencing of mitochondrial subcellular organelles revealed that wogonin exhibited anti-UC effects by inhibiting afamin (AFM), with these effects modulated by BCRP and MRP2. These findings not only suggest a new mechanism for increasing the oral bioavailability of this flavonoid, but also provide a pharmacological foundation for the clinical use of wogonin in treating UC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2024.107570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!