The characteristics of temperature-responsive ionic liquids on the integrated operational effectiveness of water reclamation from semiconductor wastewater using forward osmosis.

Chemosphere

Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:

Published: December 2024

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing. The water flux of [P][TMBS] and [P][Mal] was 4.12 and 2.67 LMH in the FO for the authentic sawing wastewater, respectively. The characteristics of relatively higher hydrophobic and the structure configuration ensure the lower thermal-stimulus separation energy (E) of the spent [P][Mal] solution and its relative ease in recycling because of the higher regeneration ratio. The more hydrophilic [P][TMBS] based draw solution (DS) exhibits higher osmotic pressure, which is beneficial for water filtration but leads to higher E. The estimated energy required for the integrated processes, including FO filtration for the sawing wastewater, thermal separation of draw solute, and the reclaimed water polishing, for the system with [P][Mal] as draw solutes is 14.22 kWh m. The value significantly reduced to 1.33 kWh m if low-grade waste heat (<100 °C) was applied for the thermal separation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.144059DOI Listing

Publication Analysis

Top Keywords

draw solutes
12
water reclamation
8
forward osmosis
8
water flux
8
sawing wastewater
8
water
6
wastewater
6
draw
5
characteristics temperature-responsive
4
temperature-responsive ionic
4

Similar Publications

Background: Multi-cancer early detection (MCED) through a single blood test significantly advances cancer diagnosis. However, most MCED tests rely on a single type of biomarkers, leading to limited sensitivity, particularly for early-stage cancers. We previously developed SPOT-MAS, a multimodal ctDNA-based assay analyzing methylation and fragmentomic profiles to detect five common cancers.

View Article and Find Full Text PDF

The characteristics of temperature-responsive ionic liquids on the integrated operational effectiveness of water reclamation from semiconductor wastewater using forward osmosis.

Chemosphere

December 2024

Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.

View Article and Find Full Text PDF

Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.

View Article and Find Full Text PDF

In this paper, the unified approach is used in acquiring some new results to the coupled Maccari system (MS) in Itô sense with multiplicative noise. The MS is a nonlinear model used in hydrodynamics, plasma physics, and nonlinear optics to represent isolated waves in a restricted region. We provide new results with complicated structures to this model, including hyperbolic, trigonometric and rational function solutions.

View Article and Find Full Text PDF

Long-acting injectable in situ forming implants: Impact of polymer attributes and API.

Int J Pharm

December 2024

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Poly(DL-lactide-co-glycolide) (PLGA) and N-methyl-2-pyrrolidone (NMP)-based in situ forming implants are liquid formulations that solidify through phase separation following injection into the body. Drug is dissolved or suspended in the final formulation liquid prior to injection. Depending on the polymers used, the depots formed can deliver drug over different periods of time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!