Drug delivery to cancer cells continues to present a major therapeutic challenge. Mesenchymal stem cells (MSCs) possess an intrinsic ability to migrate specifically to tumor tissues, making them promising candidates for targeted drug delivery. Evidence from preclinical studies indicates that MSCs loaded with therapeutic anti-cancer agents exhibit considerable anti-tumor activity. Moreover, several clinical trials are currently evaluating their effectiveness in cancer patients. The integration of MSCs with synthetic nanoparticles (NPs) enhances their therapeutic potential, particularly through the use of cell membrane-coated NPs, which represent a significant advancement in the field. This review systematically investigates the tumor microenvironment, the sources of MSCs, the tumor homing mechanisms, and the methods of loading and releasing anticancer drugs from MSCs. Furthermore, cutting-edge strategies to improve the efficacy of MSCs based drug delivery systems (DDS) including the innovative use of MSC membrane coated nanoparticles have been discussed. The study concludes with an overview of the therapeutic use of MSCs as drug carriers, including a detailed analysis of the mechanisms by which MSCs deliver therapeutics to cancer cells, enabling targeted drug delivery. It aims to elucidate the current state of this approach, identify key areas for development, and outline potential future directions for advancing MSCs based cancer therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2024.116725 | DOI Listing |
Neuromodulation
January 2025
Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
Objectives: Past studies have shown the efficacy of spinal targeted drug delivery (TDD) in pain relief, reduction in opioid use, and cost-effectiveness in long-term management of complex chronic pain. We conducted a survey to determine treatment variables associated with patient satisfaction.
Materials And Methods: Patients in a single pain clinic who were implanted with Medtronic pain pumps to relieve intractable pain were identified from our electronic health record.
Adv Sci (Weinh)
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.
View Article and Find Full Text PDFInt J Pharm
January 2025
Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:
Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!