A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Egg white protein‑sodium alginate smart labels based on pH-driven method and nonphase change 3D printing in mackerel freshness response. | LitMetric

The smart labels prepared via the casting method and molten 3D printing method have a long heating time at high temperature and a dense network structure, resulting in a decrease in the color response ability of the labels. Therefore, this study uses a nonphase change foam 3D printing method with a shorter heating time to improve the color sensitivity of smart labels. By the pH driving method, the blending and pregelation of sodium alginate (Alg) can extend the drainage time of the interfacial film to the maximum extent, thus further improving the foam stability of egg white protein (EWP) and endowing the interfacial adsorption layer with better flexibility and fluidity. The pregelled Alg-EWP foam has good 3D printing adaptability, shows obvious shear thinning behavior, and has excellent shear recovery and creep recovery properties. The 3D-printed smart label has significantly higher swelling rate (275 % → 400 %), porosity (19.86 % → 42.86 %) and phenolic retention rate (55.51 % → 97.26 %). In addition, the sensitivity of the smart labels prepared via foam 3D printing significantly increased, indicating mackerel freshness. Therefore, the method of nonphase-change foam 3D printing provides a new strategy for preparing smart labels with increased porosity and color sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139404DOI Listing

Publication Analysis

Top Keywords

smart labels
20
foam printing
12
egg white
8
nonphase change
8
mackerel freshness
8
labels prepared
8
printing method
8
heating time
8
color sensitivity
8
sensitivity smart
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!