Lactamase β reprograms lipid metabolism to inhibit the progression of endometrial cancer through attenuating MDM2-mediated p53 ubiquitination and degradation.

Arch Biochem Biophys

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China. Electronic address:

Published: February 2025

Background: Lactamase β (LACTB) inhibits the metastasis and progression of multiple malignant tumors. However, little is known about its role in endometrial cancer (EC). Our study aimed to investigate the function and potential molecular mechanism of LACTB in modulating EC progression.

Methods: LACTB expression was measured via immunohistochemistry staining, Western blot and qRT-PCR. The role of LACTB in EC was investigated both in vivo and in vitro by employing xenograft mice models and using colony formation, EdU, and Transwell assays, along with flow cytometric analysis. In addition, to assess LACTB function on lipid metabolism, lipid droplets in EC cells were labeled with Nile red. Western blot, immunofluorescence staining, co-immunoprecipitation, ubiquitination assay, and cycloheximide chase assay and rescue experiments were performed to confirm the interaction between LACTB, p53, and MDM2 in EC.

Results: LACTB expression was downregulated in EC. LACTB inhibited the malignant phenotypes and reprogramed lipid metabolism in EC cells. Moreover, LACTB significantly upregulated p53 by attenuating the MDM2-mediated ubiquitination and degradation of p53. Besides, LACTB silencing facilitated the malignant phenotypes and reprogramed lipid metabolism in EC cells; this was reversed with p53 overexpression. LACTB knockdown facilitated EC progression via downregulating p53 in vivo.

Conclusion: LACTB repressed EC cell proliferation and metastasis, and reprogramed lipid metabolism via attenuating the MDM2-mediated ubiquitination and degradation of p53.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2024.110287DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
20
attenuating mdm2-mediated
12
ubiquitination degradation
12
lactb
12
reprogramed lipid
12
endometrial cancer
8
lactb expression
8
western blot
8
malignant phenotypes
8
phenotypes reprogramed
8

Similar Publications

Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.

View Article and Find Full Text PDF

Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis.

Redox Rep

December 2025

Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.

View Article and Find Full Text PDF

Secondhand vape exposure regulation of CFTR and immune function in cystic fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA.

Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CFTR channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.

Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.

View Article and Find Full Text PDF

Metabolic reprogramming is a hallmark of cancer. Distinct and unusual metabolic aberrations occur during tumor development that lead to the growth and development of tumors. Oncogenic signaling pathways eventually converge to regulate three major metabolic pathways in tumor cells i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!