Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices.

Biomed Mater

Lab of Stem Cells and Tissue Engineering, State Key Lab of Biotherapy, Sichuan University West China Hospital, No.1, Keyuan 4th Rd, High-Tech District, Chengdu, 610041, CHINA.

Published: January 2025

The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMDhADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction (qRT‒PCR). Our findings revealed that TNMDhADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMDhADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ada509DOI Listing

Publication Analysis

Top Keywords

stem cells
12
human adipose-derived
8
adipose-derived stem
8
decellularized tendon
8
tendon slices
8
regeneration repair
8
proliferation migration
8
migration tenogenic
8
tenogenic differentiation
8
response tenomodulin-positive
4

Similar Publications

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).

Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!