A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland. | LitMetric

Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland.

J Environ Manage

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China. Electronic address:

Published: January 2025

Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF. Rising water levels decreased soil bacterial diversity and EMF; neutral model analysis showed that the contribution of stochastic processes in bacterial community assembly decreased during the flood period. Structural equation modeling revealed that soil moisture and pH were the primary factors influencing EMF during the dry period, while soil pH, bacterial diversity, and water depth were the main factors affecting EMF during the flood period. Our study highlights that the dry-wet transitions caused by water level fluctuations lead to distinct seasonal driving patterns of EMF. This study provides a data reference for studying the ecological effects of water level fluctuations and wetland management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123965DOI Listing

Publication Analysis

Top Keywords

water level
20
soil bacterial
20
level fluctuations
16
bacterial communities
12
bacterial diversity
12
bacterial
8
bacterial community
8
ecosystem multifunctionality
8
flood period
8
water
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!