The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:

Published: December 2024

The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes. We synthesized a novel Schiff base pH probe, Ce-3,5-Cl-Salpn (3,5-Cl-Salpn = N, N'-bis (3,5-dichlorosalicylidene)ethylene-1,3-diaminopropane), and introduced its analogues Ce-5-Cl-Salpn (5-Cl-Salpn = N, N'-bis (5-chlorosalicylidene)ethylene-1,3-diaminopropane) and Ce-Salpn (Salpn = N, N'-bis (salicylidene)ethylene-1,3-diaminopropane) for comparative analysis. Through fluorescence measurements, single-crystal analysis, and theoretical calculations, we demonstrate that halogen substitution leads to significant modulation of fluorescence intensity and SIR in the pH range of 6.0 to 7.0. Notably, Ce-3,5-Cl-Salpn exhibited the highest SIR, with a 182.5-fold increase, compared to the non-halogenated variant's 9.2-fold rise. Frontier molecular orbital (FMO) analysis revealed a reduction in the HOMO-LUMO energy gap as halogen substitution increased, resulting in enhanced optical properties and more efficient electronic transitions. Additionally, binding energy calculations confirmed that halogen atoms strengthen intermolecular interactions, thereby improving molecular stability and aggregation-caused quenching effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.125668DOI Listing

Publication Analysis

Top Keywords

halogen substitution
12
schiff base
12
fluorescence intensity
8
intensity ratio
8
base complexes
8
binding energy
8
impact halogen
4
substitution quantities
4
quantities fluorescence
4
ratio lanthanide
4

Similar Publications

Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.

View Article and Find Full Text PDF

Pentafluoroorthotellurate Uncovered: Theoretical Perspectives on an Extremely Electronegative Group.

Inorg Chem

January 2025

Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain.

The pentafluoroorthotellurate group (-OTeF, teflate) exhibits high electron-withdrawing properties. Indeed, it is often used as a bulky substitute for fluoride due to its high chemical stability and larger size, which reduces its tendency to act as a bridging ligand. These characteristics make it a valuable ligand in synthetic chemistry, facilitating the preparation of molecular structures analogous to polymeric fluoride-based compounds.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:

The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a new method for upgrading natural asphalt into a catalyst through a process called metal-free sonobromination.
  • The method involves creating a palladium complex on natural asphalt, which is then used as a recoverable catalyst in the Suzuki reaction for synthesizing biphenyl derivatives.
  • The process is environmentally friendly, uses a green solvent, and showcases the potential for sustainable materials development from renewable resources.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!