Hepatitis B virus (HBV) infection remains a significant global health challenge, often leading to severe liver complications such as cirrhosis and cancer. Current treatments rely heavily on nucleos(t)ide analogues like adefovir and tenofovir due to their potent antiviral effects. However, their clinical utility is limited by insufficient liver targeting, leading to off-target side effects, particularly nephrotoxicity. To improve liver-specific drug delivery and reduce adverse effects, we designed novel liver-targeted prodrugs by conjugating adefovir and tenofovir with N-acetylgalactosamine (GalNAc) and tris-GalNAc ligands, which have high affinity for the asialoglycoprotein receptor (ASGPR) predominantly expressed in hepatocytes. Four prodrugs (A1, A2, T1, and T2) were synthesized and evaluated for cytotoxicity, maximum tolerated dose, anti-HBV activity, metabolic stability, pharmacokinetics, and liver-targeting properties. The prodrugs exhibited low cytotoxicity, robust anti-HBV activity, and enhanced selectivity compared to their parent drugs. Notably, the tris-GalNAc conjugates A2 and T2 demonstrated superior liver targeting, showing a threefold higher concentration in the liver compared to the kidneys, thus minimizing renal exposure. These findings suggest that GalNAc and tris-GalNAc conjugation is a promising strategy for enhancing the therapeutic efficacy and safety of adefovir and tenofovir, with potential for further optimization as liver-targeted anti-HBV prodrugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.117207 | DOI Listing |
Eur J Med Chem
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China. Electronic address:
Hepatitis B virus (HBV) infection remains a significant global health challenge, often leading to severe liver complications such as cirrhosis and cancer. Current treatments rely heavily on nucleos(t)ide analogues like adefovir and tenofovir due to their potent antiviral effects. However, their clinical utility is limited by insufficient liver targeting, leading to off-target side effects, particularly nephrotoxicity.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Endocrinology, Lishui Central Hospital, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China.
Pathog Immun
July 2024
Abbott Laboratories, Abbott Diagnostics Division, Abbott Park, IL.
Background: Newer biomarkers of Hepatitis B virus (HBV) infection and treatment response have not been well-characterized in individuals with HBV/HIV coinfection.
Methods: Pre-genomic RNA (pgRNA) and quantitative HBsAg (qHBsAg) were used to evaluate the associations with baseline characteristics. Participants included two separate groups - 236 with HBV/HIV coinfection enrolled in a cross-sectional cohort in Ghana and 47 from an HBV nucleoside/nucleotide treatment trial comparing tenofovir to adefovir in the United States.
J Am Chem Soc
August 2024
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C and C) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc.
View Article and Find Full Text PDFBiochem Pharmacol
October 2024
Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan Clinical Molecular Diagnosis Center, Molecular Diagnostic Technology Hunan Engineering Research Center, Clinical Medical Research Center for Molecular Diagnosis of Infectious Diseases in Hunan Province, Changsha 410011, China. Electronic address:
Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!