An adequate understanding of the NO interacting chemistry is a prerequisite for a smoother transition to carbon-lean and carbon-free fuels such as ammonia and hydrogen. In this regard, this study presents a comprehensive study on the H atom abstraction by NO from C to C alkynes, dienes, and trienes forming 3 HNO isomers (i.e., TRANS_HONO, HNO, and CIS_HONO), encompassing 8 hydrocarbons and 24 reactions. Through a combination of high-level quantum chemistry computation, electronic structures, single-point energies, C-H bond dissociation energies, and 1-D hindered rotor potentials of the reactants, transition state (TS), complexes, and products involved in each reaction are determined at DLPNO-CCSD(T)/cc-pVDZ//M06-2/6-311++g(d,p), from which potential energy surfaces and energy barriers for each reaction are determined. Following this, the rate coefficients for all studied reactions, over a temperature range from 298 to 2000 K, are computed based on TS theory using the Master Equation System Solver program by considering unsymmetric tunneling corrections. Comprehensive analysis of branching ratios elucidates the diversity and similarities between different species, different HNO isomers, and different abstraction sites. Incorporating the calculated rate parameters into a recent chemistry model reveals the significant influences of this type of reaction on model performance, where the updated model is consistently more reactive for all the alkynes, dienes, and trienes studied in predicting autoignition characteristics. Sensitivity and flux analyses are further conducted, through which the importance of H atom abstractions by NO is highlighted. With the updated rate parameters, the branching ratios in fuel consumption clearly shift toward H atom abstractions by NO while away from H atom abstractions by ȮH. The obtained results emphasize the need for adequately representing these kinetics in new alkyne, diene, and triene chemistry models to be developed by using the rate parameters determined in this study, and call for future efforts to experimentally investigate NO blending effects on alkynes, dienes, and trienes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c07335DOI Listing

Publication Analysis

Top Keywords

alkynes dienes
16
dienes trienes
16
rate parameters
12
atom abstractions
12
atom abstraction
8
hno isomers
8
reaction determined
8
branching ratios
8
atom
5
key kinetic
4

Similar Publications

An adequate understanding of the NO interacting chemistry is a prerequisite for a smoother transition to carbon-lean and carbon-free fuels such as ammonia and hydrogen. In this regard, this study presents a comprehensive study on the H atom abstraction by NO from C to C alkynes, dienes, and trienes forming 3 HNO isomers (i.e.

View Article and Find Full Text PDF

Cobalt-Catalyzed Intramolecular [4 + 2] Cycloaddition of Cyclopropyl-Capped Dienes with Alkynes/Alkenes/Allene and Reaction Mechanism.

Org Lett

December 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

A cobalt-catalyzed intramolecular [4 + 2] cycloaddition of cyclopropyl (CP)-capped dienes with ynes/enes/allene was reported, providing an efficient method toward a spiro[2.5]octene ring system found in natural products, such as illudin. The [4 + 2] cycloadducts can be converted into other compounds via CP chemistry.

View Article and Find Full Text PDF

Skipped dienes are among the most prevalent motifs in a vast array of natural products, medicinal compounds, and fatty acids. Herein, we disclose a straightforward one-step reductive protocol under Co/PC for the synthesis of diverse 1,4-dienes with excellent regio- and stereoselectivity. The protocol employs allenyl or allyl carbonate as π-allyl source, allowing for the direct synthesis of skipped diene with a broad range of alkynes including terminal alkynes, propargylic alcohols, and internal alkynes.

View Article and Find Full Text PDF

Nickel-Catalyzed Reductive Alkenylation of Enol Derivatives: A Versatile Tool for Alkene Construction.

Acc Chem Res

November 2024

State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.

Article Synopsis
  • - Ketone-to-alkene transformations are important in organic chemistry, and recent nickel-catalyzed reductive alkenylation reactions show promise for creating a variety of alkenes using different functional groups.
  • - The authors' research started with coupling α-chloroboronates, then expanded to include a range of radical-inactive compounds, leading to the development of new strategies for cross-selectivity in various chemical reactions.
  • - These advancements enable efficient synthesis of valuable products, including functionalized cycloalkenes and diverse alkenes, by broadening the types of enol derivatives used in the reactions, making the approach more accessible and practical.
View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates that the addition of arylboronic acids to aryl(alkyl)alkynes can preferentially form 1,1-diarylalkenes (α-addition) when using a rhodium catalyst with a chiral diene ligand.
  • The typical reaction produces carbon-carbon bonds at the alkyl-substituted carbon (β-addition) with a different rhodium/DM-BINAP catalyst, highlighting how ligand choice affects regioselectivity.
  • Furthermore, this unique α-addition strategy allows for the efficient synthesis of complex molecules like axially chiral alkylidene dihydroanthracenes with high enantioselectivity via a multi-step process involving migration and cyclization.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!