Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.76 within 10 min. Additionally, membrane fouling and transmembrane pressure are significantly reduced compared to conventional filtration techniques, offering advantages such as lower driving pressure and improved particle recovery. Rigorous experimental analysis and theoretical modeling reveal that this method establishes a critical balance between drag and electrokinetic forces acting on the nanoparticles, thereby enhancing separation and concentration efficiencies. Our research outcome paves the way for advanced particle manipulation techniques, potentially transforming biomolecule enrichment practices in diverse biomedical fields, including point-of-care diagnostics, highly sensitive biochemical detection, and bioprocessing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04124DOI Listing

Publication Analysis

Top Keywords

separation preconcentration
8
electrokinetic forces
8
electrokinetic
4
electrokinetic enhancement
4
enhancement membrane
4
membrane techniques
4
techniques efficient
4
efficient nanoparticle
4
separation
4
nanoparticle separation
4

Similar Publications

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.

View Article and Find Full Text PDF

Monitoring paracetamol levels in environmental samples is essential, as this widely used pharmaceutical can degrade water quality and adversely affect both ecosystems and human health. To address this issue, a novel, simple, sensitive, and accurate method has been developed. This method employs a functionalized ionic liquid, 2-(4-hydroxybenzyl)hydrazinium chloride ([HBH][Cl]), specifically designed to structurally mimic paracetamol and function as a complexing agent.

View Article and Find Full Text PDF

As natural resources continue to be exploited, dense medium cyclones (DMCs) are increasingly utilized for the preconcentration of low-grade ores to meet the demands for higher feed grade, increased processing capacity, and reduced energy consumption. However, determining the optimal fineness of ferrosilicon remains ambiguous for different types of ores and is often described as more of an art than a science. This paper investigates the subtle effects of ferrosilicon fineness on flow field characteristics, medium classification, and the ore separation process using a validated numerical approach, which integrates a two-fluid model, a turbulence dispersion model, and a discrete phase model.

View Article and Find Full Text PDF

In this study, a preconcentration strategy based on Ni(OH) nanoflowers (NFs) was developed for the extraction/separation of bismuth ions from environmental water samples before the determination by flame atomic absorption spectrometry (FAAS). The homogeneous coprecipitation method was employed for the synthesis of the flower-shaped Ni(OH) and used as an adsorbent for the preconcentration of bismuth. The extraction variables were determined by a univariate optimization strategy to obtain maximum extraction performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!