Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h. In a porcine full-thickness wound model, CO-GEMs significantly accelerated wound closure compared to the standard-of-care dressing (Tegaderm). Wound area closure with CO-GEMs was 68.6% vs 56.8% on day 14, 41.0% vs 25.1% on day 28, and 26.9% vs 11.8% on day 42, effectively reducing healing time by 14 days. Histological analysis revealed increased epithelialization and neovascularization with reduced inflammation. These findings demonstrate the potential of CO-GEMs as a topical therapeutic to enhance tissue repair in clinically relevant models, supporting further testing for wound-healing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c00904 | DOI Listing |
Biomacromolecules
January 2025
Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Protein crystallization is essential for determining the three-dimensional structures of biomacromolecules and advancing biopharmaceutical development, yet it remains a major challenge in structural biology due to common issues like slow nucleation rates and inconsistent crystal quality. Herein, a dual-drive crystallization (DDC) strategy, relying on a composite film of sodium alginate (SA) and hyaluronic acid (HA), is reported to synergistically regulate both protein adsorption and solution supersaturation. Driven by the electrostatic interactions of SA and the water absorption properties of HA, the SA/HA film achieves enhanced crystallization efficiency and controlled crystal quality mainly.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFGels
November 2024
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
The abundance of hyaluronic acid (HA) in human tissues attracts its thorough research in tissue regenerating scaffolds and 3D bioprintable hydrogel preparation. Though methacrylation of HA can lead to photo-crosslinkable hydrogels, the catalyst has toxicity concerns, and the hydrogel is not suitable for creating stable complex 3D structures using extrusion 3D bioprinting. In this study, a dual crosslinking on methacrylated HA is introduced, using cysteamine-grafted HA and varying concentrations of 2-hydroxy ethyl acrylate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!