The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit, and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe van der Waals (vdW) heterostructure. By injecting high-energy electrons into NbSe under an electric field, a non-equilibrium state is induced, resulting in significant modulation of the superconducting properties. Owing to the intrinsic polarization of ferroelectric GaSe, a much steeper subthreshold slope and asymmetric modulation are achieved, which is beneficial for the device performance. Based on these results, a superconducting switch is realized that can reversibly and controllably switch between the superconducting and normal states under an electric field. Our findings highlight the significant high-energy injection effect from band engineering in 2D vdW heterostructures combining superconductors and ferroelectric semiconductors and demonstrate the potential for applications in superconducting integrated circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c13683 | DOI Listing |
Phys Rev Lett
December 2024
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit, and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe van der Waals (vdW) heterostructure.
View Article and Find Full Text PDFNano Lett
December 2024
Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden.
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex-the smallest quantized object in superconductors-can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg-Landau equations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!