Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gradient structures are effective for microwave absorbing but suffer from inadequate lightweight and poor flexibility, making them fall behind the comprehensive requirements of electromagnetic protection. Herein, we propose a hierarchical gradient structure by integration with porous and sandwich structures. Specifically, polyimide (PI) foams are used as a robust and flexible skeleton, in which the foam cell walls are sandwiched by TiCT, ZnO, and ZrO atomic layers in sequence. Owing to the decreasing conductivity of TiCT, ZnO, and ZrO, they form gradient impedance matching layers on both sides of the PI foam cell walls, significantly enhancing the absorbing intensity for microwaves. In addition, the porous and sandwich structures can synergistically facilitate multiple reflections, increasing the number of interactions between microwave and foam cell walls. Therefore, the resulting lightweight ZrO@ZnO@TiCT@PI (ZrZnTP) composite foams reach a minimum reflection loss of -68.4 dB with an effective absorbing bandwidth covering the whole X band (8.2-12.4 GHz). The ZrZnTP also exhibits outstanding flexibility even at an extremely low temperature of -196 °C (i.e., liquid nitrogen). This work offers a general approach to realizing hierarchically integrated structures of gradient, porousness, and sandwich structures for lightweight, flexible, broadband, and strong microwave absorbing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c19268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!