A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sparse high-dimensional decomposition of non-primary auditory cortical receptive fields. | LitMetric

Sparse high-dimensional decomposition of non-primary auditory cortical receptive fields.

PLoS Comput Biol

Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America.

Published: January 2025

Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity. The complexity of non-primary STRFs hence impedes understanding how acoustic stimulus representations are transformed along the auditory pathway. Here, we focus on the relationship between ferret primary auditory cortex (A1) and a secondary region, dorsal posterior ectosylvian gyrus (PEG). We propose estimating receptive fields in PEG with respect to a well-established high-dimensional computational model of primary-cortical stimulus representations. These "cortical receptive fields" (CortRF) are estimated greedily to identify the salient primary-cortical features modulating spiking responses and in turn related to corresponding spectrotemporal features. Hence, they provide biologically plausible hierarchical decompositions of STRFs in PEG. Such CortRF analysis was applied to PEG neuronal responses to speech and temporally orthogonal ripple combination (TORC) stimuli and, for comparison, to A1 neuronal responses. CortRFs of PEG neurons captured their selectivity to more complex spectrotemporal features than A1 neurons; moreover, CortRF models were more predictive of PEG (but not A1) responses to speech. Our results thus suggest that secondary-cortical stimulus representations can be computed as sparse combinations of primary-cortical features that facilitate encoding natural stimuli. Thus, by adding the primary-cortical representation, we can account for PEG single-unit responses to natural sounds better than bypassing it and considering as input the auditory spectrogram. These results confirm with explicit details the presumed hierarchical organization of the auditory cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1012721DOI Listing

Publication Analysis

Top Keywords

neuronal responses
16
auditory cortical
12
stimulus representations
12
auditory
8
non-primary auditory
8
receptive fields
8
responses
8
responses natural
8
natural stimuli
8
primary auditory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!