Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In nanomedicine, the cellular export of nanomaterials has been less explored than uptake. Traditionally viewed in a negative light, recent findings highlight the potential of nanomedicine export to enhance therapeutic effects. This Perspective examines key pathways for export and how nanomaterial design affects removal rates. We present the idea of the "paracrine transfer effect" (PTE), where nanomaterials are first internalized by a "waypoint" cell and then exported to a "destination" cell, influencing both in potentially exploitable ways. Essential characteristics for nanomedicines to leverage the PTE are discussed, along with two case studies: STING-stimulating polymeric nanoparticles and TLR9-stimulating liposomal spherical nucleic acids. We propose future research directions to better understand and utilize the PTE in developing more effective nanomedicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c15052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!