A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The right way to ride the wrong bike: An exploration of Klein's 'unridable' bicycle. | LitMetric

The right way to ride the wrong bike: An exploration of Klein's 'unridable' bicycle.

PLoS One

Department of Mechanical Engineering, Northern Illinois University, DeKalb, Illinois, United States of America.

Published: January 2025

Professor Richard Klein and his students built a bicycle with a rather interesting feature: no one was able to ride it. A prize was offered. Hundreds of students and cycling enthusiasts attempted it. Years passed, and the prize money grew. Klein's rear-steered bicycle became a canonical example of how non-minimum phase systems can be difficult and sometimes nearly impossible to control. It has been lauded as a particularly effective educational example in which students can experience the loss of controllability in a seemingly simple, albeit unorthodox bicycle. The primary result of the work reported here is a demonstration that it is possible for a human of modest athletic ability to ride Klein's unridable bicycle, to keep it balanced, and to control its direction of travel. There is a secret to riding Klein's rear-steer bicycle. The secret is revealed through an exploration of the dynamics and control of the bike that contains three elements: (1) modeling the physics of the actively steered bicycle as an inverted pendulum riding atop a carriage; (2) recognizing that the steer kinematics leads to competing physical mechanisms which an aspiring rider might exploit; and (3) examining limitations of controllability and stabilizability of the system from a state space perspective. From this vantage point, one can devise a novel strategy, based on a component of lateral acceleration that dominates at low speed, for riding the so-called "unridable" bike and solving Klein's puzzle. The work adds a new chapter on the dynamics and control of the rear-steered bicycle, a problem of academic interest.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315769PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695032PMC

Publication Analysis

Top Keywords

bicycle
8
rear-steered bicycle
8
dynamics control
8
klein's
5
ride wrong
4
wrong bike
4
bike exploration
4
exploration klein's
4
klein's 'unridable'
4
'unridable' bicycle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!