The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer. Increasing antibody affinity into the low picomolar range endowed potent neutralization of VOCs and protection of hACE2 mice from viral challenge. Cryoelectron microscopy and crystal structures of two affinity-matured antibodies (4C12-B12 and 4G1-C2) in complex with RBD highlighted binding modes and epitopes distal from mutational hotspots commonly overserved in VOCs, providing direct structural insights into the observed mutational resistance. Moreover, we further demonstrate that antibodies targeting the class 6 epitope, rather than being an artifact of in vitro selection, are common in the IgG1 memory B cell repertoire of convalescent patients and can be induced in human antibody V-gene transgenic mice through immunization. Our results highlight the importance of very high (picomolar) affinity in the development of neutralizing antibodies and vaccines and suggest an affinity threshold in the provision of broad and long-lasting immunity against SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2417544121 | DOI Listing |
Hum Vaccin Immunother
December 2025
Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
One of the key features of chronic hepatitis B virus (HBV) infection is the inability to mount sufficient and coordinated adaptive immune responses against HBV. Recent studies on HBV-specific B cells and antibody to hepatitis B surface antigen (anti-HBs) have shed light on their role in the pathogenesis of chronic hepatitis B (CHB). Anti-HBs is recognized as a protective immune marker, both for HBV infection clearance and following vaccination, and it is also considered an important indicator of functional cure for CHB.
View Article and Find Full Text PDFPLoS One
January 2025
Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba.
SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, PHILADELPHIA, PA, USA; University of Pennsylvania, Philadelphia, PA, USA.
Background: Neurodegenerative diseases with the presence of tau pathology account for 90% of dementia in human patients, the most common of which is Alzheimer's disease (AD). Although therapeutic approaches targeting tau and tau pathology are still under development, it remains unclear how tau targeting antibodies can inhibit the development of tau pathology.
Method: We hypothesize tau antibodies enter neurons and inhibit the seeding of tau pathology without direct interaction to the pathogenic tau seeds.
J Infect Dis
January 2025
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Background: The emergence of new SARS-CoV-2 variants poses a new challenge for the treatment of immunocompromised patients against COVID-19. In this context, high titer COVID-19 Convalescent Plasma (CCP) is one of the few available therapeutics for these patients. We have revisited the selection of CCP samples and its efficacy against Omicron XBB.
View Article and Find Full Text PDFFront Immunol
January 2025
Polpharma Biologics S.A., Gdansk, Poland.
Background: Biosimilar natalizumab (biosim-NTZ) is the first biosimilar monoclonal antibody of reference natalizumab (ref-NTZ) for treatment of relapsing forms of multiple sclerosis (MS). Within the totality of evidence for demonstration of biosimilarity, immunogenicity assessments were performed in healthy subjects and patients with relapsing-remitting MS (RRMS) to confirm a matching immunogenicity profile between biosim-NTZ and ref-NTZ.
Methods: Immunogenicity of biosim-NTZ versus ref-NTZ was evaluated in two pivotal clinical studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!