Current limitations in implant design often lead to trade-offs between minimally invasive surgery and achieving the desired post-implantation functionality. Here, we present an artificial intelligence inverse design paradigm for creating deployable implants as planar and tubular thermal mechanical metamaterials (thermo-metamaterials). These thermo-metamaterial implants exhibit tunable mechanical properties and volume change in response to temperature changes, enabling minimally invasive and personalized surgery. We begin by generating a large database of corrugated thermo-metamaterials with various cell structures and bending stiffnesses. An artificial intelligence inverse design model is subsequently developed by integrating an evolutionary algorithm with a neural network. This model allows for the automatic determination of the optimal microstructure for thermo-metamaterials with desired performance,i.e., target bending stiffness. We validate this approach by designing patient-specific spinal fusion implants and tracheal stents. The results demonstrate that the deployable thermo-metamaterial implants can achieve over a 200% increase in volume or cross-sectional area in their fully deployed states. Finally, we propose a broader vision for a clinically informed artificial intelligence design process that prioritizes biocompatibility, feasibility, and precision simultaneously for the development of high-performing and clinically viable implants. The feasibility of this proposed vision is demonstrated using a fuzzy analytic hierarchy process to customize thermo-metamaterial implants based on clinically relevant factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c17625 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Current limitations in implant design often lead to trade-offs between minimally invasive surgery and achieving the desired post-implantation functionality. Here, we present an artificial intelligence inverse design paradigm for creating deployable implants as planar and tubular thermal mechanical metamaterials (thermo-metamaterials). These thermo-metamaterial implants exhibit tunable mechanical properties and volume change in response to temperature changes, enabling minimally invasive and personalized surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!