A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy management strategy for methanol hybrid commercial vehicles based on improved dung beetle algorithm optimization. | LitMetric

In order to solve the problem of poor adaptability and robustness of the rule-based energy management strategy (EMS) in hybrid commercial vehicles, leading to suboptimal vehicle economy, this paper proposes an improved dung beetle algorithm (DBO) optimized multi-fuzzy control EMS. First, the rule-based EMS is established by dividing the efficient working areas of the methanol engine and power battery. The Tent chaotic mapping is then used to integrate strategies of cosine, Lévy flight, and Cauchy Gaussian mutation, improving the DBO. This integration compensates for the traditional dung beetle algorithm's tendency to fall into local optima and enhances its global search capability. Subsequently, fuzzy controllers for the driving charging mode and hybrid driving mode are designed under this rule-based EMS. Finally, the improved DBO is used to obtain the optimal control of the fuzzy controller by taking the fuel consumption of the whole vehicle and the fluctuation change of the battery state of charge (SOC) as the optimization objectives. Compared to traditional rule-based energy management strategies, the optimized fuzzy control using the enhanced DBO continuously adjusts the torque distribution between the engine and motor based on the vehicle's real-time state, resulting in a 9.07% reduction in fuel consumption and a 3.43% decrease in battery SOC fluctuations.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313303PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695043PMC

Publication Analysis

Top Keywords

energy management
12
dung beetle
12
management strategy
8
hybrid commercial
8
commercial vehicles
8
improved dung
8
beetle algorithm
8
rule-based energy
8
rule-based ems
8
fuel consumption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!