A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A GPU-accelerated fuzzy method for real-time CT volume filtering. | LitMetric

During acquisition and reconstruction, medical images may become noisy and lose diagnostic quality. In the case of CT scans, obtaining less noisy images results in a higher radiation dose being administered to the patient. Filtering techniques can be utilized to reduce radiation without losing diagnosis capabilities. The objective in this work is to obtain an implementation of a filter capable of processing medical images in real-time. To achieve this we have developed several filter methods based on fuzzy logic, and their GPU implementations, to reduce mixed Gaussian-impulsive noise. These filters have been developed to work in attenuation coefficients so as to not lose any information from the CT scans. The testing volumes come from the Mayo clinic database and consist of CT volumes at full and at simulated low dose. The GPU parallelizations reach speedups of over 2700 and take less than 0.1 seconds to filter more than 300 slices. In terms of quality the filter is competitive with other state of the art algorithmic and AI filters. The proposed method obtains good performance in terms of quality and the parallelization results in real-time filtering.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316354PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694987PMC

Publication Analysis

Top Keywords

medical images
8
terms quality
8
gpu-accelerated fuzzy
4
fuzzy method
4
method real-time
4
real-time volume
4
volume filtering
4
filtering acquisition
4
acquisition reconstruction
4
reconstruction medical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!