The most advanced monoclonal antibodies (mAbs) and vaccines against malaria target the central repeat region or closely related sequences within the circumsporozoite protein (PfCSP). Here, using an antigen-agnostic strategy to investigate human antibody responses to whole sporozoites, we identified a class of mAbs that target a cryptic PfCSP epitope that is only exposed after cleavage and subsequent pyroglutamylation (pGlu) of the newly formed N terminus. This pGlu-CSP epitope is not targeted by current anti-PfCSP mAbs and is not included in the licensed malaria vaccines. MAD21-101, the most potent mAb in this class, confers sterile protection against infection in a human liver-chimeric mouse model. These findings reveal a site of vulnerability on the sporozoite surface that can be targeted by next-generation antimalarial interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adr0510 | DOI Listing |
Alzheimers Dement
December 2024
College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
Background: The "Recruitment and Retention for Alzheimer's Disease Diversity Genetic Cohorts in the ADSP (READD-ADSP)" is developing a resource to expand ancestral diversity in Alzheimer disease (AD) studies to dissect the genetic architecture of AD across different populations. In addition to US sites, READD-ADSP includes four US sites and nine countries in sub-Saharan Africa through the Africa Dementia Consortium (AfDC). The overall goal of READD-ADSP is to identify genetically driven targets in diverse groups including African Americans and Hispanic/Latinos in US, and Africans.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer.
View Article and Find Full Text PDFScience
January 2025
Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
The most advanced monoclonal antibodies (mAbs) and vaccines against malaria target the central repeat region or closely related sequences within the circumsporozoite protein (PfCSP). Here, using an antigen-agnostic strategy to investigate human antibody responses to whole sporozoites, we identified a class of mAbs that target a cryptic PfCSP epitope that is only exposed after cleavage and subsequent pyroglutamylation (pGlu) of the newly formed N terminus. This pGlu-CSP epitope is not targeted by current anti-PfCSP mAbs and is not included in the licensed malaria vaccines.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Molecular Ocean Lab, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Carrer de Jordi Girona 18-26, 08034 Barcelona, Spain.
Protein-bound ligands can adopt a range of different conformations, collectively defining a ligand envelope that has proven to be crucial for the design of potent and selective drugs. Yet, the cryptic nature of this ligand envelope makes it difficult to visualize, characterize, and ultimately exploit for drug design. Using enhanced molecular dynamics simulations, here, we provide a general framework to reconstruct the cryptic ligand envelope that is dynamically accessible by protein-bound small molecules in solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!