Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors. The majority of these root cell wall thickenings and cell types that contain them are absent in the model plant despite being present in most plant species. As a result, we know very little regarding their developmental control and function. Increasing evidence suggests that these structures are critical for responding to and facilitating adaptation to a wide array of stresses that a plant root experiences. These structures function in blocking apoplastic transport, oxygen, and water loss and enhancing root penetrative strength. In this review, we describe the most common types of cell wall thickenings in the outer cell types of plant roots-the velamen, exodermal thickenings, the sclerenchyma, and phi thickenings. Their cell-type dependency, morphology, composition, environmental responsiveness, and genetic control in vascular plants are discussed, as well as their potential to generate more stress-resilient roots in the face of a changing climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-arplant-102820-112451 | DOI Listing |
Microb Cell Fact
January 2025
Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Radish is an important annual root vegetable crop, whose yield is largely dependent on taproot thickening and development. However, the regulatory network of WOXs-mediated taproot development remains poorly understood in radish. Herein, the RsWOX13 was classified in an ancient clade of the WOX gene family that harbors a conserved homeodomain.
View Article and Find Full Text PDFClin Neurol Neurosurg
December 2024
Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:
Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
January 2025
Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
Introduction: There is a rise in antifungal resistance as well as the emergence of multidrug resistant fungal pathogens worldwide, including in Africa.
Method: This systematic review summarized the published data on the mechanisms and epidemiology of antifungal resistance in species in Africa between 2000 and early 2024.
Result: Seventeen reports from seven African countries were analyzed but due to the paucity of data, the prevalence of antifungal resistant isolates in Africa could not be estimated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!