Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied . In cases where the KS-CLF can be accessed via heterologous expression, often the cognate ACPs are not activatable by the broad specificity surfactin-producing phosphopantetheinyl transferase (PPTase) Sfp and, conversely, in systems where the ACP can be activated by Sfp, the corresponding KS-CLF is typically not readily obtained. Here, we report the high-yield heterologous expression of both cyanobacterial sp. PCC 7428 minimal type II PKS (gloPKS) components in , which allowed us to study this minimal type II PKS . Initially, neither the cognate PPTase nor Sfp converted gloACP to its active state. However, by examining sequence differences between Sfp-compatible and -incompatible ACPs, we identified two conserved residues in gloACP that, when mutated, enabled high-yield phosphopantetheinylation of gloACP by Sfp. Using analogous mutations, other previously Sfp-incompatible type II PKS ACPs from different bacterial phyla were also rendered activatable by Sfp. This demonstrates the generalizability of our approach and breaks down a longstanding barrier to type II PKS studies and the exploration of complex biosynthetic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.4c00678DOI Listing

Publication Analysis

Top Keywords

type pks
16
acyl carrier
8
carrier protein
8
type
8
type polyketide
8
polyketide synthase
8
type pkss
8
heterologous expression
8
pptase sfp
8
minimal type
8

Similar Publications

Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied .

View Article and Find Full Text PDF

Fungal secondary metabolites (SMs) have broad applications in biomedicine, biocontrol, and the food industry. In this study, whole-genome sequencing and annotation of were conducted, followed by comparative genomic analysis with 11 other species of Polyporales to examine genomic variations and secondary metabolite biosynthesis pathways. Additionally, transcriptome data were used to analyze the differential expression of polyketide synthase (PKS), terpene synthase (TPS) genes, and transcription factors (TFs) under different culture conditions.

View Article and Find Full Text PDF

Despite several studies documenting secondary metabolite (SM) production by endophytes, their commercial use is often limited owing to the research lacunae in the underlying biosynthetic pathway and the corresponding metabolic flux. Combining epigenetic modulation with RNA-Seq analysis constitutes a promising approach for inducing regulatory gene(s) and thereby identifying their role in SM biosynthesis. Our earlier studies had identified the hypomethylating effects of prednisone in umbelliferone (UMB) (7-hydroxyl coumarin) producing endophytic Fusarium oxysporum isolate, ZzEF8 isolated from Zingiber zerumbet rhizomes.

View Article and Find Full Text PDF
Article Synopsis
  • Proguanil is metabolized into its active form, cycloguanil, through the OCT1 transporter and CYP2C19 enzyme, with genetic variations affecting this process.
  • The study investigated the impact of specific genetic differences (SLC22A1 polymorphisms) on how the drug is processed in the body, focusing on a Korean population.
  • The results indicate that individuals with the CT genotype of the SLC22A1 polymorphism experience higher levels of proguanil but lower levels of cycloguanil, due to reduced hepatic uptake of proguanil.
View Article and Find Full Text PDF

Biological Characteristics of a Novel Bibenzyl Synthase () Gene from Catalyzing Dihydroresveratrol Synthesis.

Molecules

November 2024

Key Laboratory for Biodiversity Conservation in Karst Mountain Area of Southwestern China, National Foresty and Grassland Administration, Guiyang 550005, China.

Bibenzyl compounds are one of the most important bioactive components of natural medicine. However, as a traditional herbal medicine is rich in bibenzyl compounds and performs functions such as acting as an antioxidant, inhibiting cancer cell growth, and assisting in neuro-protection. The biosynthesis of bibenzyl products is regulated by bibenzyl synthase (BBS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!