Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid d-biotin with paraformaldehyde in the presence of 0.3 equivalents of 48 % aqueous HBr, which functions as a catalyst, template, and liquid grinding additive. This mechanochemical process is carried out in a shaker or planetary mill, followed by aging at an elevated temperature to produce biotin[6]uril with an HPLC yield of up to 96 %. The condensation and macrocyclization reaction was successfully scaled up 82-fold, producing nearly 20 g of biotin[6]uril with a high 92 % isolated yield and 91 % purity. Compared to conventional solution-based method, this mechanochemical approach offers several advantages, including significantly higher yields, shorter reaction times, enhanced scalability, simpler operational requirements, and substantially lower process mass intensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202402354 | DOI Listing |
ChemSusChem
January 2025
Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia.
Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid d-biotin with paraformaldehyde in the presence of 0.
View Article and Find Full Text PDFNat Commun
February 2024
Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea.
Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy.
View Article and Find Full Text PDFAdvancement of hyperpolarized Xe MRI technology toward clinical settings demonstrates the considerable interest in this modality for diagnostic imaging. The number of contrast agents, termed biosensors, for Xe MRI that respond to specific biological targets, has grown and diversified. Directly functionalized xenon-carrying macrocycles, such as the large family of cryptophane-based biosensors, are good for localization-based imaging and provide contrast before and after binding events occur.
View Article and Find Full Text PDFJ Org Chem
March 2019
Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen Ø , Denmark.
Binding of anions using macrocyclic structures with a nonpolar interior using the CH···anion interaction as the recognition motif has gained popularity in the past few years, and such receptors often rely on a subtle interplay between enthalpic and entropic factors. For these types of receptors solvation of both the anion and the binding pocket of the macrocyclic host play important roles in the overall energetic picture of the binding event. Systematic chemical modifications of synthetic receptors that are able to bind anions in a variety of solvents is an important tool to gain understanding of the factors that determine the supramolecular chemistry of anions.
View Article and Find Full Text PDFChem Soc Rev
May 2017
Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA.
Biotin/(strept)avidin self-assembly is a powerful platform for nanoscale fabrication and capture with many different applications in science, medicine, and nanotechnology. However, biotin/(strept)avidin self-assembly has several well-recognized drawbacks that limit performance in certain technical areas and there is a need for synthetic mimics that can either become superior replacements or operational partners with bio-orthogonal recognition properties. The goal of this tutorial review is to describe the recent progress in making high affinity synthetic association partners that operate in water or biological media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!