Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The human genome is composed of distinct genomic regions that are susceptible to various types of somatic mutations. Among these, Short Tandem Repeats (STRs) stand out as the most mutable genetic elements. STRs are short repetitive polymorphic sequences, predominantly situated within noncoding sectors of the genome. The intrinsic repetition characterizing these sequences makes them highly mutable in vivo. Consequently, this characteristic provides the chance to unravel the natural developmental history of human viable cells retrospectively. However, STRs also introduce stutter noise in vitro amplification, which makes their analysis challenging. Here we describe our integrated biochemical-computational platform for single-cell lineage analysis. It consists of a pipeline whose inputs are single cells and whose output is a lineage tree of input cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4310-5_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!