A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemical process of hydrogen and formic acid on a Pd-deposited Cu(111) surface studied by high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. | LitMetric

Formic acid (HCOOH) is one of the essential molecules for CO utilization including methanol synthesis and hydrogen carriers. In this study, we have investigated the chemical processes of hydrogen and HCOOH on a dilute-alloy Pd-Cu(111) surface using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and density functional theory (DFT) calculations. The present Pd-Cu(111) surface was prepared at 500 K, and the observed core-level shifts of Pd 3d indicate that Pd atoms were located at the surface and subsurface sites: 335.3 eV at the surface and 335.6 eV at subsurface sites, respectively. The coverage of surface Pd atoms was estimated to be 0.05 ML, indicating that the present Pd-Cu(111) surface acted as a single atom alloy catalyst. The observed C 1s and O 1s XPS spectra indicate that the surface chemistry of HCOOH on the present Pd-Cu(111) surface is almost equivalent to a bare Cu(111) surface; HCOOH is dissociated into monodentate formate and atomic hydrogen at 150-160 K, followed by conversion to bidentate formate species at 300 K, and finally it is decomposed and desorbed as CO + ½H at ∼450 K. The conversion ratio of adsorbed HCOOH to bidentate formate species on Pd-Cu(111) was 12%, almost the same as that on Cu(111). That monodentate formate species and atomic hydrogen aggregate around the Pd atom is supported by the observed core-level shift of Pd 3d and systematic DFT calculations. The present DFT calculations also show that formate species are preferably adsorbed on the Cu site; thus, the Pd site is unoccupied by formate species at this stage. This implies that the present single atom alloy catalyst Pd-Cu(111) has an advantage during CO hydrogenation, where the Pd site can act as the H dissociation site without poisoning by formate intermediate species.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03942dDOI Listing

Publication Analysis

Top Keywords

formate species
20
pd-cu111 surface
16
dft calculations
12
surface
10
formic acid
8
cu111 surface
8
high-resolution x-ray
8
x-ray photoelectron
8
photoelectron spectroscopy
8
density functional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!