A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel inhibition of sortase A by plantamajoside: implications for controlling multidrug-resistant infections. | LitMetric

Novel inhibition of sortase A by plantamajoside: implications for controlling multidrug-resistant infections.

Appl Environ Microbiol

Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.

Published: December 2024

AI Article Synopsis

  • The research introduces plantamajoside (PMS) as an innovative inhibitor of sortase A (SrtA), an enzyme crucial for the virulence of methicillin-resistant Staphylococcus aureus (MRSA), showcasing its potential in combating multi-drug resistant pathogens.
  • PMS effectively reduces MRSA's ability to adhere to surfaces and form biofilms, leading to increased survival rates in infected cell models and proving beneficial in animal models by lowering mortality rates and bacterial loads.
  • The findings emphasize the significance of targeting specific bacterial mechanisms, such as SrtA, to develop new therapeutic strategies against antibiotic-resistant infections, particularly MRSA.

Article Abstract

In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in . We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from . (Plantaginaceae), acts as an effective and reversible inhibitor of SrtA, with a notable IC value of 22.93 µg/mL. This breakthrough provides a novel approach to combat both resistance and virulence in MRSA. PMS significantly inhibits adhesion to fibrinogen, reducing biofilm formation and hindering the anchoring of staphylococcal protein A to the cell wall. Live-dead cell assays demonstrated increased survival rates in PMS-treated MRSA-infected A549 cells. Fluorescence quenching experiments revealed a robust interaction between PMS and SrtA, with mechanistic analyses pinpointing the critical R197 amino acid residue as the target site. , PMS was highly effective in a infection model, reducing mortality rates in MRSA-infected larvae. Additionally, PMS demonstrated therapeutic efficacy in a mouse pneumonia model, improved survival rates, reduced the bacterial load in pulmonary tissues, and mitigated lung damage. These results validate PMS as a promising compound to mitigate MRSA virulence and thwart resistance by targeting SrtA. This study highlights PMS as a leading candidate for controlling MRSA infections, showing the potential of targeting specific bacterial mechanisms in the fight against MDR infections.IMPORTANCEThe increasing issue of antibiotic resistance, particularly in methicillin-resistant (MRSA), demands innovative solutions. Our study presents plantamajoside (PMS) as a novel inhibitor of sortase A (SrtA), a key enzyme in pathogenicity. By targeting SrtA, PMS shows promise in curbing the ability of MRSA to adhere, invade, and form biofilms, thereby reducing its virulence without exerting selective pressure for resistance. This research is significant because it introduces a potential new strategy in the antimicrobial arsenal, aligning with the global effort to combat drug-resistant infections. This study is crucial because it identifies a natural compound that can reduce the harmful effects of MRSA, a type of bacteria that is very hard to treat owing to resistance to many antibiotics. This discovery could lead to new treatments that are less likely to cause bacteria to become resistant, which is a major win in the fight against infections that are difficult to cure.

Download full-text PDF

Source
http://dx.doi.org/10.1128/aem.01804-24DOI Listing

Publication Analysis

Top Keywords

pms
9
methicillin-resistant mrsa
8
sortase srta
8
plantamajoside pms
8
survival rates
8
targeting srta
8
mrsa
7
srta
6
resistance
5
novel inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!