Doramectin, a 16-membered macrocyclic lactone that is widely used in the treatment of mammalian parasitic diseases. Doramectin was produced by mutant using cyclohexanecarboxylic acid as a precursor. As a semi-synthetic insecticidal agent produced, the production of doramectin was low, which could not be satisfy the demands of industrial fermentation. In this study, a high-yield mutant strain DA-137 was screened from the starting strain D-11 through a high-throughput screening strategy. D-11 was treated with iterative atmospheric and room temperature plasma mutagenesis to induce mutations. Mutation strains were prescreened by spreading on enhanced doramectin-tolerance plates and were rescreened in 24-deep microtiter plates and via microplate readers to obtain high-producing strains. The resulting mutant strain DA-137 produced 431.5 mg/L doramectin, a 187% increase compared to that of D-11, revealing mutagenesis and doramectin-tolerance screening is an efficient method to enhance doramectin production. Then, fermentation medium was optimized using the response surface method to improve doramectin production. In the optimized fermentation medium, the yield of doramectin was increased to 934.5 mg/L in shake flask. Furthermore, batch culture was carried out in a 50 L fermenter, and the yields of doramectin reached 1217 mg/L at 216 h, which was the highest yield reported to date. This study demonstrates a successful approach for enhancing doramectin production through high-throughput screening strategy and medium optimization, serving as a reference for increasing the yield of other macrocyclic lactone antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2024.2448181 | DOI Listing |
Prep Biochem Biotechnol
January 2025
College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei Province, China.
Doramectin, a 16-membered macrocyclic lactone that is widely used in the treatment of mammalian parasitic diseases. Doramectin was produced by mutant using cyclohexanecarboxylic acid as a precursor. As a semi-synthetic insecticidal agent produced, the production of doramectin was low, which could not be satisfy the demands of industrial fermentation.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
June 2024
Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan,, 430068, China.
Doramectin, an essential animal anthelmintic, is synthesized through the fermentation process of Streptomyces avermitilis. This study delves into the transcriptomic profiles of two strains, namely the doramectin-producing wild-type S. avermitilis N72 and its highly doramectin-producing mutant counterpart, S.
View Article and Find Full Text PDFInfect Disord Drug Targets
July 2024
College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India.
Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV-2, coronavirus, monkeypox (Mpox) virus, . ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection.
View Article and Find Full Text PDFVet Parasitol
November 2023
Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI 49007 USA.
We present a fixed-dose combination injectable (FDCI) solution for cattle formulated for a single subcutaneous administration at a dose rate of 1 ml/25 kg of body weight to deliver a dose of 0.2 mg/kg of doramectin and 6.0 mg/kg of levamisole hydrochloride (5.
View Article and Find Full Text PDFVet Parasitol
November 2023
Zoetis, 333 Portage Street, Kalamazoo, MI 49007, USA.
Macrocyclic lactone (ML) resistance in cattle gastrointestinal nematodes (GINs) is an increasing problem. Concurrent combination anthelmintic therapy incorporating an existing ML with a second drug class has been proposed to control cattle GINs while slowing the development of ML resistance. Two dose confirmation studies were conducted to investigate the efficacy of a new fixed-dose combination injectable (FDCI) anthelmintic against common cattle GINs known to negatively impact production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!