: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability. Recombinant type I collagen films were mineralized in different PGA-ACP solutions for 3 d and observed transmission electron microscopy (TEM) to confirm the occurrence of intrafibrillar mineralization. The collagen scaffolds were mineralized for 7 d and observed scanning electron microscopy (SEM) to determine the collagen mineralization pattern and degree. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG) were used to analyse the mineralized collagen scaffold composition. : The PGA-ACP solutions with γ-PGA of different MWs and concentrations had different stabilities and type I collagen mineralization. Except for the 100 kDa group, which neither stabilized the supersaturated calcium phosphate solution nor induced intrafibrillar mineralization, the groups stabilized the solutions for at least 10 h and induced different intrafibrillar mineralization patterns and degrees. : In our system, the PGA-ACP solution stability and occurrence of intrafibrillar mineralization are directly correlated. Thus, we suspect that the same correspondence exists in other biomimetic mineralization systems and that a relatively stable supersaturated calcium phosphate solution may be a necessary condition for intrafibrillar mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4bm00842aDOI Listing

Publication Analysis

Top Keywords

intrafibrillar mineralization
20
type collagen
16
collagen mineralization
12
calcium phosphate
12
pga-acp solutions
12
mineralization
10
stability polygamma-glutamic
8
biomimetic mineralization
8
mws concentrations
8
pga-acp solution
8

Similar Publications

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Collagen films play an essential role in guided bone-regeneration (GBR) techniques, which create space, promote cell adhesion, and induce osteogenic differentiation. It is therefore crucial to design appropriate GBR films to facilitate bone regeneration. However, current electrospun collagen scaffolds used as bioactive materials have limited clinical applications due to their poor mechanical properties.

View Article and Find Full Text PDF

Proanthocyanidins modification of the mineralized collagen scaffold based on synchronous self-assembly/mineralization for bone regeneration.

Colloids Surf B Biointerfaces

January 2025

Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, China. Electronic address:

Article Synopsis
  • Proteoglycans (PG) play an essential role in bone development by regulating collagen formation and mineralization, but existing PG-modified collagen scaffolds face challenges with infection resistance in clinical settings.
  • Researchers explored using proanthocyanidins (PA) to mimic PG functions and enhance the performance of scaffolds, while also providing antibacterial properties to combat infections during tissue regeneration.
  • The study found that while PA altered collagen fibril formation and mineralization when added at different stages, it ultimately improved scaffold features like hydrophilicity, degradation resistance, and biocompatibility, leading to enhanced bone regeneration outcomes in critical-size defect models.
View Article and Find Full Text PDF

Simultaneous co-assembly of collagen and glycosaminoglycans to build a biomimetic extracellular matrix for bone regeneration.

Int J Biol Macromol

November 2024

Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Glycosaminoglycans (GAGs), also known as shape modules, are considered junctions that help define the shape of collagen matrix and further promote mineralization during osteogenesis. Many attempts have been made to immobilize GAGs on assembled collagen to modify the latter's surface state. However, it remains unclear how GAGs spontaneously identify collagen molecules during fibrillogenesis in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how polymeric nanoparticles containing tideglusib (TDg-NPs) affect the formation, crystallinity, and elasticity of the resin-dentin interfaces in teeth.
  • Results showed that TDg-NPs led to higher crystallinity and improved mechanical properties compared to undoped nanoparticles, with better aligned hydroxyapatite crystals.
  • Although the TDg-NPs initiated effective mineralization, thermal stress negatively impacted the functional mineralization and crystallinity of the treated dentin.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!