This study introduces a novel method for functionalizing natural asphalt, presenting new opportunities for upgrading asphaltenes from road to a catalyst. The process utilizes a metal-free sonobromination technique in acetic acid to incorporate carbon-halogen substituents onto natural asphalt. These sites are then targeted by nucleophilic substitution with diethanolamine, followed by complexation with Pd(0) to create a unique palladium complex grafted onto natural asphalt. This stabilized complex serves as a heterogeneous and recoverable catalyst in the Suzuki reaction. This complex facilitates the reaction between aryl boronic acids and various -, -, and -substituted aryl halides under mild conditions using polyethylene glycol-400 as the green solvent. The reaction conversion rate is significantly influenced by the leaving group ability of the halides and the electronic and steric effects of the substituents on both reactants. This environmentally friendly process offers a broad substrate scope (24 examples) and achieves excellent yields of biphenyl derivatives. Notably, it employs a naturally derived catalytic support, underscoring its sustainability. This research potentially unlocks the bonding of nucleophiles to the natural asphalt for developing novel functional materials from this renewable resource.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03523 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, 710064, China.
Unmanned rollers are typically equipped with satellite-based positioning systems for positional monitoring. However, satellite-based positioning systems may result in unmanned rollers driving out of the specified compaction areas during asphalt road construction, which affects the compaction quality and has potential safety hazards. Additionally, satellite-based positioning systems may encounter signal interference and cannot locate unmanned rollers.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.
Sci Rep
December 2024
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.
The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.
View Article and Find Full Text PDFWater Res
December 2024
Faculty of Applied Science, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
In this research, a sustainable blue-green infrastructure (BGI) was developed to efficiently remove contaminants from stormwater through a combined use of modified porous asphalt (PA) and microalgae cultivation to provide a potential drinking water (DW) source. According to the results, the modified PA with powder activated carbon (PAC) could successfully reduce the level of total suspended solids (TSS), turbidity, polycyclic aromatic hydrocarbons (PAHs), oil and grease to below the DW standards but failed to efficiently remove some heavy metals (HMs) and nutrient pollutants. The results revealed that the treated stormwater was an appropriate medium for microalgae cultivation.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 12 Avenue, 35-959 Rzeszow, Poland.
This paper presents the properties of an SMA LA (stone matrix asphalt Lärmarmer) mixture based on the polymer-modified binder PMB 45/80-55, formed by the addition of zeolites (synthetic zeolite type Na-P1 and natural zeolite-clinoptilolite). The compositions of the SMA 11, SMA 8 LA and SMA 11 LA mixtures based on modified bitumen with PMB 45/80-55 (reference mixture) or PMB 45/80-55 with Na-P1 or clinoptilolite were determined. Their resistance to permanent deformation, water sensitivity, water permeability and susceptibility to changes in texture and skid resistance during the period of use were verified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!