Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations. When two-dimensional (2D) graphene is transformed into a three-dimensional (3D) origami structure, the resultant GOri/PE nanocomposite exhibits a higher IFSS due to the larger surface roughness of GOri and the associated higher van der Waals interaction strength between the filler and the matrix. Moreover, the incorporation of GOri into the PE matrix leads to more flexible and auxetic nanocomposites due to the unusual properties of GOri. The unique combination of high IFSS, high flexibility, and intrinsic auxeticity makes GOri/PE nanocomposites an ideal candidate for many practical applications, such as impact protection, flexible electronics, and soft robotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c14065 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China.
Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.
View Article and Find Full Text PDFACS Nano
October 2024
Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Integrating single-walled carbon nanotubes (SWCNTs) into supramolecular self-assemblies harnesses the distinctive mechanical, optical, and electronic properties of the nanoparticles alongside the structural and chemical properties of the assemblies. Organic molecules capable of forming supramolecular assemblies through hydrophobic, van der Waals, and π-π interactions have been demonstrated to be particularly effective in dispersing and functionalizing SWCNTs, as these same interactions facilitate the binding to the hydrophobic graphene-like surface of the SWCNTs. This review discusses a variety of self-assembling structures that were shown to integrate SWCNTs, ranging from simple micelles and ring structures to complex DNA origami and three-dimensional hydrogels formed by low-molecular-weight gelators.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi, 321-8585, Japan.
Skyrmion structures play critical roles in solid-state systems involving electric, magnetic and optical fields. Previous approaches to the study of skyrmions have involved specific structures in magnetic materials, liquid crystals and polymers in addition to two-dimensional arrays used for electrical control. These methods have encountered limitations and constraints on both the microscopic and macroscopic scales related to the physical properties of materials.
View Article and Find Full Text PDFHeliyon
August 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran.
Static bending responses of a pressurized composite cylindrical shell made of a copper matrix reinforced with functionally graded graphene origami are studied in this paper. The kinematic relations are extended based on a new higher-order shear and normal deformation theory in the axisymmetric framework. The constitutive relations are extended for the composite cylindrical shell where the effective modulus of elasticity, Poisson's ratio, thermal expansion coefficient and density are estimated using the Halpin-Tsai micromechanical model and the rule of mixture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!