The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface. The orientational change of the [TFSA]- anion and concomitant increase in the area it occupies at the CCl4 interface was observed to be greater than that at the air interface. This is accompanied by the expansion of the space among the alkyl chains of the cations to be solvated by CCl4. The structural change of the CCl4 interface from the air interface can be attributed to the solvophilic effect of CCl4 on the alkyl chains of the cations at the CCl4/[Cnmim][TFSA] interface. This is in contrast with the solvophobic effect of CCl4 on the Langmuir film at the CCl4/water interface. This phenomenon is caused by the loosely packed alkyl chains of the cations at the RTIL surface and the flexible anion-cation arrangement owing to the weak basicity and acidity of the ions in the RTILs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0237698DOI Listing

Publication Analysis

Top Keywords

alkyl chains
16
liquid/liquid interfaces
12
ccl4 interface
12
chains cations
12
vibrational spectroscopy
8
ionic liquids
8
ccl4
8
interface
8
air interface
8
interfaces
5

Similar Publications

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.

View Article and Find Full Text PDF

Resorcinol-based Bolaamphiphilic Quaternary Ammonium Compounds.

ChemMedChem

January 2025

Villanova University, Chemistry, 800 E Lancaster Ave, 19085, Villanova, UNITED STATES OF AMERICA.

Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms.

View Article and Find Full Text PDF

A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M) is 10 000-43 000 g mol after purification.

View Article and Find Full Text PDF

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!