Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors.

Soft Matter

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Published: January 2025

AI Article Synopsis

  • Researchers developed flexible hybrid films using nickel-cobalt metal-organic frameworks (2D NiCo-MOF), graphene oxide (GO), and carbon nanotubes (CNTs) as supercapacitor electrode materials via vacuum filtration.
  • The optimal mass ratio of these materials is 2:1:0.5, leading to a high specific capacitance of 40.3 F/g and impressive cycling stability, with 82.8% capacitance retention after 5000 cycles.
  • The films maintain flexibility even after multiple bends and can power an LED when connected in series, showcasing their practical application potential.

Article Abstract

Flexible two-dimensional nickel-cobalt metal-organic frameworks/graphene oxide/carbon nanotubes (2D NiCo-MOF/GO/CNTs) hybrid films have been designed and prepared as high-performance supercapacitor electrode materials vacuum filtration. The 2D NiCo-MOF nanosheets serve as the main source of capacitance for the hybrid films, while CNTs function as both the conductive network, enhancing the electrical conductivity of the MOFs, and the binder, linking the 2D NiCo-MOF nanosheets and GO. When the mass ratio of 2D NiCo-MOF, GO, and CNTs is 2 : 1 : 0.5, the hybrid film exhibits a high specific capacitance of 40.3 F g at 0.4 A g. Furthermore, the film electrode demonstrates outstanding cycling stability, with a capacitance retention of 82.8% after 5000 cycles at 1 A g. Notably, the CV curves of the asymmetric supercapacitor (ASC) show almost no change after multiple bending, indicating excellent flexibility. Additionally, two devices connected in series can light an LED, demonstrating significant potential for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm01139bDOI Listing

Publication Analysis

Top Keywords

hybrid films
8
nico-mof nanosheets
8
synthesis nico-mof/go/cnts
4
nico-mof/go/cnts flexible
4
flexible films
4
films high-performance
4
high-performance supercapacitors
4
supercapacitors flexible
4
flexible two-dimensional
4
two-dimensional nickel-cobalt
4

Similar Publications

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.

View Article and Find Full Text PDF

Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors.

Soft Matter

January 2025

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Article Synopsis
  • Researchers developed flexible hybrid films using nickel-cobalt metal-organic frameworks (2D NiCo-MOF), graphene oxide (GO), and carbon nanotubes (CNTs) as supercapacitor electrode materials via vacuum filtration.
  • The optimal mass ratio of these materials is 2:1:0.5, leading to a high specific capacitance of 40.3 F/g and impressive cycling stability, with 82.8% capacitance retention after 5000 cycles.
  • The films maintain flexibility even after multiple bends and can power an LED when connected in series, showcasing their practical application potential.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!