Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Published: January 2025

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor. This receptor is an accessory protein of vacuolar H-ATPase (V-ATPase), a complex consisting of 14 subunits and two accessory proteins. Here we explored whether V-ATPase elements other than the (P)RR affect megalin-mediated prorenin uptake. Using RNAi technology, we inhibited each individual V-ATPase subunit in megalin-expressing BN16 cells. Subsequently, we quantified megalin expression and the uptake of prorenin. To unravel the underlying molecular mechanisms, we investigated the adaptor proteins autosomal recessive hypercholesterolemia (ARH) and Disabled-2 (Dab2), which are important for the endocytosis of megalin, glycogen synthase kinase 3β (GSK3β), a regulatory factor of megalin recycling, and endoplasmic reticulum stress factors (ERSF). Silencing subunit Atp6va1 reduced prorenin uptake by 19%, while silencing accessory protein Atp6ap1 increased it by 15%. Silencing other subunits exerted a more modest or no effect. Silencing Atp6va1 reduced surface megalin density, without altering its mRNA and protein levels, and this was associated with increased GSK3β phosphorylation and no change in ARH, Dab2, and ERSF. Silencing Atp6ap1 increased megalin mRNA and protein expression and this was accompanied by upregulation of ARH and ERSF, while Dab2 expression was unaltered. In conclusion, V-ATPase units differently affect megalin-mediated reabsorption of prorenin, thereby offering novel pharmacological targets to not only affect renal renin-angiotensin system activity, but also to treat renal diseases that are associated with disturbed protein reabsorption, like Dent's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694337PMC
http://dx.doi.org/10.1002/jcp.31518DOI Listing

Publication Analysis

Top Keywords

prorenin uptake
12
vacuolar h-atpase
8
prorenin
8
megalin-mediated prorenin
8
prorenin receptor
8
protein reabsorption
8
accessory protein
8
affect megalin-mediated
8
ersf silencing
8
atp6va1 reduced
8

Similar Publications

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.

View Article and Find Full Text PDF

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF
Article Synopsis
  • This study assesses the effectiveness of the potassium binder sodium zirconium cyclosilicate (SZC) in managing potassium levels and helping heart failure patients with reduced ejection fraction (HFrEF) start and maintain RAAS inhibitors.
  • In a sample of 44 patients, SZC reduced mean potassium levels significantly and allowed for increased use of various heart failure therapies, showing high rates of adherence to guideline-recommended dosing.
  • The results indicated improved heart failure outcomes, including reduced hospitalization rates and enhancements in heart function, with no negative effects on kidney function or blood pressure noted.
View Article and Find Full Text PDF

Evaluation of Angiotensin-Converting Enzyme 2 Expression with Novel Ga-Labeled Peptides Originated from the Coronavirus Receptor-Binding Domain.

ACS Pharmacol Transl Sci

October 2024

Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.

Angiotensin-converting enzyme 2 (ACE2) is not only a key to the renin-angiotensin-aldosterone system and related diseases, but also the main entry point on cell surfaces for certain coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. By analyzing the different key binding sites from the receptor-binding domain (RBD) of SARS-CoV and SARS-CoV-2, nine new ACE2-targeting peptides (A to A) were designed, synthesized and connected with a chelator, 1,4,7-triazacyclononane-'-triacetic acid (NOTA). NOTA-A, NOTA-A, NOTA-A, NOTA-A, and NOTA-A were successfully labeled with [Ga]Ga and were used for biological evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!