A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective binding and fluorescence sensing of Zn(II)/Cd(II) using macrocyclic tetra-amines with different fluorophores: insights into the design of selective chemosensors for transition metals. | LitMetric

AI Article Synopsis

  • Selective binding and optical sensing of Zn(II) and Cd(II) in water were studied using different receptors (L1, HL2, L3, HL4, HL5) to see how complex stability affects metal signaling.
  • The receptors all have a cyclic tetra-amine structure combined with either one or two quinoline or 8-hydroxyquinoline units, influencing their properties and interactions.
  • The study showed that Zn(II) forms more stable complexes with some receptors, while Cd(II) complexes benefit from better fitting in specific cavities, leading to unique optical behaviors for each metal in their respective complexes.

Article Abstract

Selective binding and optical sensing of Zn(II) and Cd(II) by L1, HL2, L3, HL4 and HL5 receptors were analysed in aqueous solutions by coupling potentiometric, UV-vis absorption and fluorescence emission measurements, with the aim to determine the effect of complex stability on selective signalling of metals with similar electronic configurations. All receptors share the same cyclic tetra-amine binding unit attached to a single quinoline (Q) or 8-hydroxyquinoline (8-OHQ) unit (L1 and HL2, respectively), two Q or 8-OHQ moieties (L3 and HL4, respectively), and, finally, two Q and two acetate groups (HL5). The crystal structures of the Cd(II) and Zn(II) complexes show that L3 and HL4 feature a cavity in which the larger Cd(II) complex is better fitted than the Zn(II) complex, leading to the formation of more stable Cd(II) complexes. In turn, Zn(II) forms more stable complexes with L1 and HL2, owing to its high tendency to give 5-coordinated complexes. Considering optical selectivity, Zn(II) gives the most emissive complex with L3, while the corresponding Cd(II) complex is basically quenched. The gathered structure of the Zn(II) complex, in which the two Q units are associated with one another-a structural motif not observed in the [CdL3] complex-leads to poor solvation of the Q units, favouring complex emission. Among 8-OHQ-containing receptors, the most emissive complex is formed by Cd(II) with HL2, containing a single 8-OHQ moiety. HL4 forms non-emissive complexes: the presence of two coordinating 8-OHQ moieties weakens metal interactions with the tetra-amine unit, favouring PET to the excited fluorophore that quench the emission.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt02415jDOI Listing

Publication Analysis

Top Keywords

selective binding
8
cdii hl2
8
complex
8
8-ohq moieties
8
cdii complex
8
znii complex
8
emissive complex
8
znii
6
cdii
6
complexes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!