Ionogels are a promising solution to improve the functionality of electrochromic devices (ECDs) by solving issues related to traditional liquid electrolytes, such as volatility, toxicity, and leakage. However, manufacturing ionogels is complicated as it often involves cross-linking polymerization or chemical sol-gel processes, requiring large amounts of inorganic or polymeric gelators. This results in low ionic conductivity and poor ECD performance. This study demonstrates the fabrication of highly conductive supramolecular ionogels by directly solidifying an ionic liquid (IL) using a low-molecular-weight gelator with a very low content (5 wt%). The resulting ionogel, DBS-G, exhibited self-healing properties, high optical transmittance (>86%), and high ionic conductivity (3.12 mS cm) comparable to the pure IL. When combined with a conjugated thiophene-based electrochromic polymer or by incorporating electrochromic viologen derivatives and ferrocene into the ionogel, the constructed five-or three-layer ECDs demonstrate electrochromic performance comparable to IL electrolyte and surpassing polymer gelator-based ionogels. They exhibit high optical contrast, rapid response, high coloring efficiency, good cycle stability, and can operate effectively in a broad temperature range from -25 °C to 80 °C. Furthermore, the adhesive properties of DBS-G facilitate the fabrication of flexible ECDs, which exhibit commendable electrochromic performance and cycle stability under bending conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4mh00852a | DOI Listing |
Mater Horiz
January 2025
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, Hunan, China.
Ionogels are a promising solution to improve the functionality of electrochromic devices (ECDs) by solving issues related to traditional liquid electrolytes, such as volatility, toxicity, and leakage. However, manufacturing ionogels is complicated as it often involves cross-linking polymerization or chemical sol-gel processes, requiring large amounts of inorganic or polymeric gelators. This results in low ionic conductivity and poor ECD performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Adv Mater
November 2024
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea.
The drive to enhance the operational durability and reliability of stretchable and wearable electronic and electrochemical devices has led to the exploration of self-healing materials that can recover from both physical and functional failures. In the present study, we fabricated a self-healable solid polymer electrolyte, referred to as an ionogel, using reversible hydrogen bonding between the ureidopyrimidone units of a block copolymer (BCP) network swollen in an ionic liquid (IL). The BCP consisted of poly(styrene--(methyl acrylate--ureidopyrimidone methacrylate)) [poly(S--(MA--UPyMA)], with the IL-phobic polystyrene forming micellar cores that were interconnected via intercorona hydrogen bonding between the ureidopyrimidone units.
View Article and Find Full Text PDFAdv Mater
November 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Practical applications of existing self-healing ionogels are often hindered by the trade-off between their mechanical robustness, ionic conductivity, and temperature requirements for their self-healing ability. Herein, this challenge is addressed by drawing inspiration from sea cucumber. A polyurethane containing multiple hydrogen-bond donors and acceptors is synthesized and used to fabricate room-temperature self-healing ionogels with excellent mechanical properties, high ionic conductivity, puncture resistance, and impact resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!